Library of the Museum

OF

COMPARATIVE ZOOLOGY,

AT HARVARD COLLEGE, CAMBRIDGE, MASS.

Founded by private subscription, in 1861.

No. 303

Apr. 6, 1883
ANNALES DES SCIENCES NATURELLES

ZOLOGIE ET PALÉONTOLOGIE

COMPRENANT L'ANATOMIE, LA PHYSIOLOGIE, LA CLASSIFICATION ET L'HISTOIRE NATURELLE DES ANIMAUX

PUBLIÉES SOUS LA DIRECTION DE MM. H. ET ALPH. MILNE EDWARDS

TOME XV

PARIS
G. MASSON, ÉDITEUR
LIBRAIRE DE L'ACADÉMIE DE MÉDECINE
Boulevard Saint-Germain et rue de l'Éperon
En face de l'École de médecine
1883
Dans le courant du mois de mai 1880 nous trouvions, parmi quelques Algues prises à l'entrée du port de Marseille, plusieurs exemplaires d'un tout petit Mollusque noirâtre que nous rencontrions pour la première fois. Ce Mollusque rappelait bien le *Limapontia nigra* par sa forme générale, sa coloration et son extrême petiteurs, mais ses téguments dorsaux étaient séparés du reste du corps par une rainure assez profonde; en observant ces animaux vivants, au moyen d'une forte loupe, on ne tardait pas à remarquer sur le côté droit du corps une petite houppe branchiale que le manteau cachait en partie. Ces divers caractères nous firent bientôt reconnaître que nous étions en présence d'un type de Pleurobranchidés et que nous avions affaire au genre *Runcina* de Forbes, ou *Feilia* de M. de Quatrefages.

L'organisation de ce Mollusque étant très peu connue, nous nous décidâmes à en faire une étude anatomique aussi complète que possible. Nous venons aujourd'hui donner les résultats de cette étude, en joignant toutefois à cette petite monographie quelques détails anatomiques relatifs à un genre voisin, la *Tylodina*.

Ces recherches font en quelque sorte suite à celles que nous avons publiées précédemment (2) sur d'autres Opistobranches Tectibranches.

La partie bibliographique de ce travail sera assez courte.

Nous ne pouvons citer que quatre naturalistes qui se soient

(1) Ces recherches ont été faites au laboratoire de zoologie de la Faculté des sciences de Marseille, dirigé par M. le professeur Marion.

un peu occupés de la Tylo\-dina. D'abord Rafinesque qui a créé le genre et dans l'ouvrage duquel on trouve bien peu de renseignements.

Un peu plus tard, Joannis publiait dans le Magasin de zoolo\-gie de Guérin-Méneville (1833) un petit mémoire accom\-pagné de quelques figures de facies, mais cet auteur ne dit rien de l'organisation interne.

Puis viennent Philippi (1836 et 1844) et Cantraine (1840) qui ont reproduit l'un et l'autre d'une manière assez incom-\-plète la description et la figure de ce Mollusque, données par Joannis, sans rien ajouter de nouveau.

Depuis lors quelques naturalistes ont bien signalé l'existence de la Tylo\-dina dans diverses parties de la Méditerranée, mais ils n'ont jamais donné de description anatomique de cet animal, et c'est encore dans le petit mémoire de Joannis que nous trou\-vons les renseignements les plus précis ainsi que la meilleure figure de facies.

Quant au Pe\-lta, il a été l'objet de recherches assez étendues de la part de M. de Quatrefages (1). Ce savant naturaliste a désigné sous le nom de Pel\-ta coronata (Pavois couronné) cet animal qu'il est le premier à avoir rencontré; il se trouvait en abondance parmi les Fucus et les Corallines des petites mares de Bréhat (2). Les dif\-ficultés sérieuses qu'offrait la dissection d'un être aussi petit (3 à 5 millimètres), et les moyens assez défectueux dont on disposait alors pour l'observation, ne permirent pas à M. de Quatrefages de nous donner une anatomie complète de ce Mollusque. Cependant son travail, bien que déjà assez ancien, est le seul où nous trouvions quelques don\-nées sur l'organisation du Pelta.

Forbes, en 1853, dans son ouvrage sur les Mollusques de l'Angleterre (3), se contente de faire une courte description

(2) Petite île de la Manche située sur les côtes de la Bretagne.
(3) Forbes et Hanley, A history of British Mollusca and their shells, t. III, p. 611, et pl. CCC, fig. 2.

ARTICLE N° 1.
MOLLUSQUES DES GENRES PELTA ET TYLODINA.

générique et spécifique de cet être; seulement, bien que connaissant le travail de M. de Quatrefages, il croit devoir désigner sous un nouveau nom ce Mollusque « parce que l'animal décrit par le naturaliste français ne possédait pas de branchie ». Il donne la dénomination de Runcina Hancocki à ce petit animal qu'il a toujours rencontré sur les conserves dans les excavations des rochers à la limite de la marée haute.

J. E. Gray, qui parle du Pelta avec un peu plus de détails en 1857 (1), l'a recueilli parmi les touffes d'Hypnœa purpurescens croissant dans les flaques d'eau à Weymouth. Ce savant naturaliste est porté à placer le Runcina Hancocki (car il adopte les dénominations de Forbes) assez loin des Limapontia, comme le voulaient Alder et Hancock.

Avant de donner une courte description de la radula et du gésier, il dit qu'il convient de créer une famille distincte pour ce Mollusque et de la placer entre les Bullidés et les Pleurobranchidés.

Quant aux naturalistes qui s'en sont occupés, avant ou après ces deux derniers, ils donnent généralement une analyse très succincte du travail de M. de Quatrefages (Dujardin (2), Philippi (3), etc.), ou bien se contentent d'étudier cet animal au point de vue zoologique; ainsi parmi ceux-ci nous trouvons M. G. Jeffreys qui donne dans son British Conchology, vol. V, p. 14-16, les caractères génériques et spécifiques de ce gastéropode d'après les travaux de M. de Quatrefages, mais en ayant le soin de les compléter. M. Jeffreys a même séparé ce Mollusque, à l'exemple de Gray, des autres Pleurobranchidés pour en faire une nouvelle famille sous le nom de Runcinidœ.

M. Jhering, dans son ouvrage (4) sur le système nerveux des

(2) Dictionnaire d'Alcide d'Orbigny, article Pavois.
(3) Handbuch des Conchylologie und Malacozoologie, 1852, p. 279. Dans cet ouvrage, ce genre est confondu avec le Limapontia et le Chalidis, et se trouve être décrit dans la famille des Nudibranches sous la dénomination de Chalidis, après le genre Elysia.
(4) Anat. des Nervensystems und Phylogenie der Mollusken, 1877.
Mollusques, a aussi consacré quelques lignes (p. 204) à cet animal. Il conserve la famille des *Runcinidœ* et la place près des *Siphonariidœ* et des *Pleurobranchidœ*, en faisant toutefois les réserves suivantes : « l'organisation de ces animaux n’est presque pas connue, on ne sait si l’on doit les laisser à cette place ou les mettre à côté des *Limapontia*, dont ils diffèrent cependant par la structure de la *radula*, comme l’indique Gray. » — Et quelques pages plus haut (p. 199), ce même naturaliste, en s’occupant des *Limapontiade*, se demande si le *Pelita* de M. de Quatrefages doit demeurer dans cette famille et s’il n’est pas identique au *Runcina*?

Nous sommes heureux de pouvoir combler aujourd’hui cette lacune et répondre à M. Jhering que le *Runcina* et le *Pelita* sont bien une seule et même bête qui s’éloigne des *Limapontiade* non seulement par des caractères tirés de la *radula*, mais encore par l’ensemble de son organisation.

MONOGRAPHIE DU PELTA (de Quatrefages).

Ce genre a été établi par M. de Quatrefages en 1844 d’après une seule espèce de Mollusque qu’il trouva sur les côtes de la Bretagne. Depuis lors ce genre ne s’est nullement enrichi par la création de quelques nouvelles espèces, soit européennes, soit exotiques, et les naturalistes qui ont eu à signaler cet animal, indiquent toujours le *Runcina Hancocki*, qui n’est autre que le *Pelita coronata* du naturaliste français.

Son aire géographique est assez étendue ; il se trouve non seulement sur divers points des côtes de l’Angleterre (à Torquay, à Belmond-bay près Weymouth, à Clyde district, etc.), ainsi que sur les côtes françaises de la Manche (à l’île Bréat, à Concarneau, etc.), mais encore assez abondamment dans la Méditerranée (golfe de Marseille, près de l’entrée du vieux port).

Sur les côtes de l’Océan le *Pelita* se tient d’ordinaire dans les cavités ou creux des rochers toujours pleins d’eau à marée basse ; mais dans la Méditerranée où les marées ne sont pas...
sensibles, ce Mollusque vit sur une espèce d’Algues (*Cystoseira barbata* Ag. ou *C. amentacea* Bory, de la famille des Fucacées).

D’après les indications que nous trouvons dans l’ouvrage de M. G. Jeffreys (1), sur l’habitat du *Pelta* (*Runcina*), cet animal vivrait aussi dans les creux de rochers qui ne sont couverts par les eaux qu’à marée haute, et au milieu de diverses espèces de conserves (*Ceramium strictum*, *C. rubrum* et *C. Deslongchampii*).

Ce Mollusque paraît se nourrir des Diatomées et des Infusoires qui abondent sur ces Algues, peut-être même dévore-t-il quelquefois les parties les plus tendres de ces végétaux?

Dans la Méditerranée les *Pelta* vivent presque continuellement sur les tiges du *Cystoseira amentacea* et ne descendent sur les rochers qui portent ces Algues que lorsque le mauvais temps les oblige de se mettre à l’abri.

Ce Mollusque chemine assez lentement comme tous les Gastéropodes; quand la mer est très calme, il doit nager le pied en l’air à la surface de l’eau, comme nous l’avons observé maintes fois en étudiant les individus que nous avions dans les petits aquariums du laboratoire de la Faculté des sciences de Marseille.

Il ne m’a jamais été possible de voir ces animaux s’accoupler.

Avant de faire connaître l’organisation du *Pelta*, il me paraît nécessaire d’en donner les diagnoses générique et spécifique. C’est au bel ouvrage de M. Jeffreys sur les Mollusques de l’Angleterre que nous empruntons ces diagnoses, en les complétant et en les modifiant un peu sur quelques points secondaires.

Genre *PELTA* de Quatrefages, 1844.

« Corps petit, semblable à celui d’une Limace, déprimé; manteau séparé du pied par un profond sillon; tentacules

(1) *British Conchology*, vol. V, 1869.
nuls; yeux sessiles, placés séparément sur les côtés de la partie antérieure du manteau; pied allongé; branchie formée par quelques petites lames qui viennent s'appliquer sous le manteau près du bord postérieur; gésier avec quatre pièces calcaires. Coquille peut-être nulle.»

PELTA CORONATA de Quatrefages, 1844.
Syn.: Runcina-Hancocki Forbes, 1853.

«Corps lisse plus ou moins revêtu de cils vibratiles; manteau offrant une échancrure en avant, s'étendant peu sur les côtés et légèrement arrondi en arrière; couleur noire avec de petits points bruns, excepté le front et l'extrémité postérieure qui sont couleur fauve; les yeux sont assez grands, entourés d'une raie pâle; derrière les yeux se trouvent souvent de chaque côté une ligne courbe de petites taches blanches, qui est la continuation de la partie peu colorée de la région frontale. Pied jaunâtre (ocre pâle), quelquesfois marqué de taches ou de flammules noires; il est légèrement concave en avant, les côtés sont presque parallèles et un peu plus larges que le manteau. L'extrémité caudale du pied s'étend en arrière du manteau, d'un quart de la longueur totale du corps.

La branchie semi-pennée, composée de 3 à 4 petites lames, est projetée un peu vers l'arrière des téguments dorsaux, toujours du côté droit.

Formule dentaire: 1, 1, 1.

Pièces calcaires, de dimensions égales, au nombre de quatre. »

On trouve une bonne figure noire de ce Mollusque dans l'ouvrage du naturaliste anglais précédemment cité; le Pelta ne dépasse pas d'ordinaire 4 à 5 millimètres de longueur.

ASPECT EXTÉRIEUR, TÉGUMENTS.

Le Pelta rappelle plutôt par sa forme générale les Mollusques du genre Limapontia que les divers types de la famille des Pleurobranchidés. En effet, cette forme élancée, ce pied
MOLLUSQUES DES GENRES PELTA ET TYLODINA.

se prolongeant bien au delà du manteau, la présence de cils vibratiles sur toute la surface du corps, porte tout de suite la personne qui l’observe à prendre cet animal pour une espèce de Limapontia, ou encore pour un très jeune Goniodoris dépourvu de houppé branchiale sur le dos et de tentacules dorsaux ou rhinophores. Quant à la présence de la branchie sur le côté droit du Pelta, on ne peut la constater qu’après une observation très attentive faite sur un individu vivant (1).

C’est l’existence de cet organe respiratoire et sa position sur le flanc droit de ce Mollusque qui permet d’établir sa véritable position systématique dans le voisinage des Pleurobranches. Nous croyons cependant que l’on doit, à l’exemple de Gray et de quelques autres naturalistes, sortir le Pelta de la famille des Pleurobranchidés et former pour lui un groupe distinct qui relieait ces derniers Opistobranches aux Bullidés vrais. Nous basons notre manière de voir sur l’ensemble de l’organisation de cet animal (présence de plaques stomacales qui rappellent par leur forme et leur consistance celles des Haminea, absence de tentacules dorsaux ou rhinophores, disposition des organes génitaux, etc.).

Le manteau forme une bande charnue, convexe, près de deux fois plus longue que large, terminée en pointe arrondie postérieurement, se recourbant en avant pour constituer un voile buccal très rudimentaire ; il atteint sa plus grande largeur au niveau de l’insertion de la branchie et présente en ce point son maximum de convexité.

Le manteau est séparé du pied par deux sillons latéraux assez profonds qui se réunissent en arrière ; c’est dans le sillon de droite que se trouvent, en allant de la région céphalique à l’extrémité postérieure du corps, d’abord l’ouverture péniale, un peu plus loin l’orifice génital, ensuite le point d’insertion de la branchie, et recouvert par ce dernier organe, l’anus.

L’extrême petitesse de ce Mollusque et son peu de transparence ne permettent pas d’apercevoir sur l’animal ces trois

(1) Voyez la figure 1, br.
ouvertures, ce n'est que par une dissection très délicate que l'on peut arriver à le distinguer plus ou moins nettement.

Le pied, qui constitue la partie la plus volumineuse des téguments, prend naissance immédiatement en arrière de l'orifice buccal ; cet organe déborde un peu de chaque côté du manteau lorsque le Pelta est en marche, et forme à lui seul plus du dernier quart de la longueur totale de ce Mollusque.

Si l'on regarde l'animal par le côté ventral, et pour cela il faut examiner un individu nageant le pied en l'air à la surface de l'eau d'un aquarium, on observe que le pied présente à son bord antérieur une légère échancrure qui est parfois à peine sensible ; ses bords latéraux (fig. 2), qui sont à peu près parallèles, offrent cependant une légère concavité suivie d'une convexité à peine marquée, puis ils vont en convergeant pour former en arrière une espèce de bord postérieur très peu large.

Tous les téguments de ce Mollusque sont revêtus d'une couche de cils vibratiles assez courts, analogues à ceux des Æolidiadiés et du Pontolimax ; la présence de ces cils vibratiles doit faciliter sa marche lorsque l'animal nage, en rampant presque, à la surface de l'eau. Ces organes servent peut-être aussi à renouveler l'eau autour de lui en vue de favoriser les fonctions respiratoires qui doivent s'effectuer non seulement par la branchie, mais aussi par toute la surface de la peau ; la branchie étant en effet rudimentaire chez le Pelta, il n'y aurait rien d'étonnant qu'une partie de l'échange des gaz se fît à travers les téguments.

La teinte générale du corps n'est pas uniforme, elle varie dans les diverses régions de celui-ci et aussi suivant les individus. La coloration fondamentale des téguments est jaune brunâtre (couleur de buffle et de faon) très pâle, mais elle n'est guère visible qu'en un petit nombre de points de la face dorsale et sur presque toute la face ventrale ; cette coloration est générale-ment masquée par une couche superficielle de cellules contenant chacune un petit corps fusiforme d'une teinte jaune de chitine (fig. 11, c.), et surtout par un pigment d'un violet très
foncé répandu au-dessous de cette couche, ce qui donne en certains points une teinte presque noire aux tissus. Ce pigment (p.) présente un aspect nuageux; dans ces parties colorées, on aperçoit très peu de granulations pigmentaires, même en les observant avec de très forts grossissements.

Généralement, toute la face dorsale du manteau offre cette teinte noire, si ce n’est antérieurement et un peu sur les côtés où l’on remarque deux parties claires, et à l’extrémité postérieure du manteau où nous avons une bande très peu colorée, disposée en demi-cercle. La position de ces taches jaune brunâtre est assez constante, comme l’avait déjà signalé M. de Quatrefages.

La coloration du manteau n’est pas toujours aussi prononcée; chez certains individus le pigment violet est beaucoup moins abondant et les petits corps jaune de chitine que l’on observe dans l’épiderme présentent une teinte moins accentuée; dans ce cas, cette région du corps du Pelta est d’un jaune brunâtre pâle avec des taches très irrégulières plus foncées; quant aux parties claires que nous venons de signaler, elles sont encore moins colorées et plus étendues.

Les yeux occupent toujours les bords internes des taches claires de la région frontale.

Les côtés du corps et le prolongement dorsal du pied sont colorés en jaune-brun, à l’exception de la partie médiane de l’extrémité pédieuse (fig. 1) qui offre une large bande noirâtre. La face inférieure du pied est jaune brunâtre hyalin avec de petits points bruns et quelques points blancs; en son milieu, la transparence relative permet d’apercevoir la masse viscérale, ce qui enlève un peu de son aspect hyalin à cette partie.

Les ponctuations blanches se distinguent non seulement à la face inférieure de ce Mollusque, mais aussi sur toutes les autres parties du corps; ces ponctuations sont dues à la présence de petits amas de cellules à contenu calcaire (fig. 11, a.) placés immédiatement au-dessous de la couche épithéliale.

Les téguments sont assez musculaires, comme on peut en juger par les contractions que le Pelta fait subir à son corps
dès qu'on vient à le toucher, et aussi en observant au microscope un fragment du manteau ou du pied.

Malgré les recherches les plus minutieuses nous n'avons pu constater l'existence d'une petite coquille dans l'épaisseur des téguments dorsaux de cette espèce d'Opistobranches; nous croyons toutefois qu'il doit en exister une très rudimentaire.

Nous allons nous occuper maintenant de l'organisation interne de ce Mollusque. Vu l'exigüité de sa taille d'une part, et son peu de transparence d'autre part, il est très difficile d'arriver à faire une préparation à peu près complète d'un de ses systèmes organiques; on est obligé d'étudier cet animal par fragments, et de réunir ensuite ces divers débris pour en former un tout. Il ne faut donc pas songer à suivre un tronc nerveux quelconque, puisqu'il nous a été même impossible d'obtenir une préparation entière du tube digestif; lorsque nous étions arrivé à conserver toute la partie antérieure de ce dernier appareil nous ne pouvions jamais avoir intact l'intestin, car pour dégager le bulbe, l'œsophage et l'estomac il nous fallait fixer la masse viscérale avec plusieurs aiguilles qui, bien que très fines, morcelaient cette partie du corps dans tous les sens et coupaient l'intestin en divers points (1).

La cavité interne du corps ou cavité viscérale du Pelta semble être divisée en deux parties, comme chez la généralité des Mollusques Tectibranches, par une membrane assez forte de nature conjonctive. Ces deux cavités placées à la suite l'une de l'autre communiquent entre elles; elles contiennent : l'une (l'antérieure), le bulbe buccal et l'œsophage, l'organe copulateur et les centres nerveux; l'autre (la postérieure), le reste du tube digestif, le foie, l'organe de Bojanus, la glande hermaphrodite et ses annexes, le tout formant une masse volumineuse à la partie antérieure de laquelle se trouve l'organe central de la circulation.

Telle est la disposition des divers organes dans ces deux

(1) Nous donnons, figure 3, l'ensemble de la masse viscérale dépouillée des téguments.
cavités du corps, l'ouverture qui les fait communiquer occupe la partie centrale de la cloison ; bien qu'assez large, cette ouverture est presque complètement obstruée par l'œsophage, l'aorte antérieure et les troncs nerveux viscéraux qui se rendent d'une cavité dans l'autre.

ORGANES DE LA DIGESTION.

Nous allons décrire successivement les diverses régions du tube digestif ainsi que les glandes qui en dépendent.

Ouverture buccale. — On ne peut apercevoir cette ouverture que lorsque l'animal nage renversé à la surface de l'eau et en l'observant avec un grossissement d'au moins sept à huit fois ; elle est placée immédiatement en avant de la partie échancrée du bord antérieur du pied, elle est souvent cachée par ce bord, comme on peut le voir sur la figure 2 de notre première planche.

Dans l'espèce d'enfoncement produit par l'orifice de la bouche et autour de celui-ci viennent déboucher un grand nombre de glandes à mucus ; ces glandes circumbuccales dont on a déjà signalé maintes fois l'existence, et que nous avons nous-même observées et figurées dans nos recherches anatomiques sur les Bullidés (1), offrent chez le Pelta une plus grande complexité. Elles ne sont pas ici constituées par de simples vésicules plus ou moins piriformes, ayant chacune un conduit excréteur distinct, comme chez les genres Gasteropetron et Doridium, mais elles présentent des amas mûriformes très compacts, rappelant assez bien extérieurement (fig. 8) l'aspect des glandes salivaires. Chacun de ces amas glandulaires étant pourvu d'un canal excréteur assez long, il se trouve que ces organes peuvent environner les centres nerveux et contracter quelquefois une certaine adhérence avec eux. Ces glandes sont de dimensions assez variables et d'ordinaire peu nom-

breuses (de 8 à 12); leur coloration est jaune verdâtre; leur contenu hyalin présente de nombreuses granulations.

Faisant suite à la bouche nous trouvons une trompe protractile, très courte, aboutissant au bulbe buccal.

Bulbe buccal (1). — Cet organe est proportionnellement assez volumineux chez le *Pelta*; il offre une teinte générale jaune orangé, tandis que sa masse musculaire est jaune clair; le bulbe est presque oviforme, sa partie la moins renflée est en avant et se trouve directement reliée à la trompe qui ne paraît en être que le prolongement; postérieurement il se termine en s’arrondissant. C’est à la partie postéro-sупérieure de cet organe que prend naissance l’œsophage.

Les téguments du bulbe sont formés à l’extérieur par un revêtement conjonctif, au-dessous duquel on voit les masses musculaires (transverses et longitudinales) destinées à produire les contractions des diverses parties de cet organe; enfin l’intérieur de la cavité buccale est tapissé par un épithélium continu à cellules vibratiles, qui n’est interrompu qu’aux points où se trouvent les mâchoires et la radula; la coloration de cet épithélium est jaune grisâtre.

Par transparence, on peut très bien observer non seulement la position des mâchoires et de la radula, mais même leur structure.

Les mâchoires sont placées, comme chez tous les Tectibranches, à l’entrée de la cavité buccale (fig. 4, m); nous trouvons de chaque côté une membrane résistante de dimensions assez considérables, car elle atteint les lignes médiennes supérieure et inférieure du bulbe et se prolonge en arrière sur plus d’un tiers de la longueur de cet organe. Au milieu de cette membrane on observe un grand nombre de denticules chitineux (150 à 200), assez régulièrement disposés en lignes transversales, et décrivant dans leur ensemble une espèce de triangle dont le plus petit côté serait tourné vers la trompe.

On peut voir en place et par transparence sur notre figure

(1) Fig. 3, B, et fig. 4.

ARTICLE N° 1.
d'ensemble de la région antérieure du tube digestif (fig. 4) la mâchoire de gauche, puis (fig. 7) avec un plus fort grossissement ce même organe vu du côté interne; enfin nous donnons (fig. 7 bis) le dessin de quelques denticules très grossis.

La constitution des mâchoires de ce Mollusque s'éloigne assez, comme on le voit, de celle des mêmes organes chez les Pleurobranchidés vrais. Dans le cours de cette petite monographie nous aurons l'occasion, à plusieurs reprises, de faire ressortir diverses particularités spéciales au Pelta qui, par leur ensemble, doivent faire établir pour lui une famille distincte, intermédiaire entre celle des Bullidés vrais et celle des Pleurobranchidés.

La radula (r) occupe, comme toujours, le sommet d'un mamelon charnu, très musculaire, situé au fond de la cavité buccale; sa face externe est tournée vers le plafond de cette cavité, un peu vers l'ouverture oesophagienne. Cet organe est constitué par plus d'une vingtaine de rangées de dents; en avant de la première rangée on remarque sur le mamelon radulaire une tache orangée.

Chaque rangée est formée par trois dents, une médiane et deux intermédiaires ou latérales (nous savons en effet que souvent il n'y a pas de distinction possible entre les dents intermédiaires et les dents latérales et que l'on passe insensiblement des unes aux autres, comme chez les Akera, les Haminea, etc.).

Ces dents, de nature chitineuse, sont hyalines et à peu près incolores.

Les dents médianes (fig. 6) se composent de deux parties symétriques, intimement soudées; cette division peut faire supposer un état transitoire pendant lequel ces organes seraient formés de deux portions distinctes, et il est toutefois très probable, sinon certain, qu'il y a pour chacune de ces dents deux centres de formation.

Ces dents présentent, disons-nous, en leur milieu une division de chaque côté de laquelle on observe, se recourbant vers le fond du pharynx, deux prolongements offrant chacun quatre ou cinq, parfois six denticules. Inférieurement ces dents...
acquèrent une épaisseur assez forte, tout en s’élargissant, et vont s’insérer sur la membrane qui les porte.

Les dents latérales ont leur extrémité légèrement recourbée vers le fond du pharynx; leur bord interne, presque droit, touche la dent médiane et n’offre pas de denticules, tandis que leur bord externe, qui est assez incliné, présente sur près des deux tiers de sa longueur une série de denticules; on peut voir cette disposition dans notre dessin (fig. 6) où nous avons représenté une dent médiane et la dent latérale de droite dans leur position normale, la dent latérale de gauche est renversée en arrière de telle sorte que son arête dentelée se voit dans toute sa longueur.

Il n’y a jamais qu’une partie de la radula qui soit épanouie sur le mamelon radulaire (environ douze rangées de dents), le reste est contenu dans le fourreau radulaire qui se replie sur lui-même et forme à la face inférieure du bulbe buccal une proéminence assez marquée (fig. 4, f.).

Les parois supérieures de la cavité pharyngienne nous ont offert aucune trace de dents ou plaques chitineuses, comme en présentent quelques Opistobranches.

Dans le fond du pharynx, près du point de naissance de l’œsophage, nous voyons les orifices des glandes salivaires. Ces glandes forment chez ce Mollusque deux longs corps fusiformes, un peu aplatis, descendant le long de l’œsophage, et dont les extrémités inférieures viennent adhérer quelquefois aux parois de l’estomac (fig. 4). Ces organes offrent dans toute leur étendue de nombreux mamelons, sortes de lobes rudimentaires, que l’on peut observer dans notre dessin grossi (fig. 5) d’une de ces glandes; leur constitution interne est identique à celle de tous les organes semblables des autres Mollusques, leur coloration est d’un blanc légèrement jaunâtre.

L’œsophage est un peu plus long que le grand diamètre du bulbe, il est assez large et ses parois offrent peu de résistance. En allant de l’intérieur vers l’extérieur on trouve les couches suivantes: un épithélium revêtu de cils vibratiles, puis une
MOLLUSQUES DES GENRES PELTA ET TLLODINA. 15

couche musculaire (muscles longitudinaux et transverses),
enfin à l’extérieur un revêtement conjonctif.

La coloration de l’œsophage est jaune orangé.

L’estomac présente à son intérieur une armature rappelant
tout à fait celle que possèdent les Bullidés vrais; ce caractère
éloigne, par suite, le Pelta des autres Pleurobranchidés. Cet
estomac armé, véritable gésier, a une forme analogue à celui
de l’Haminea hydatis, il est cylindro-conique comme lui et offre
to sa partie antérieure plusieurs mamelons correspondant aux
sommet des plaques stomacales; seulement chez le Pelta nous
trouvons quatre mamelons par suite de l’existence de quatre
grandes plaques cornées dans cet organe au lieu de trois que
présente l’estomac de l’Haminea (4). Chez ce dernier Mollusque
l’œsophage, avant d’arriver au gésier, se renfle pour for-
mér une première cavité stomacale dont nous ne trouvons
aucune trace chez le Pelta.

Il va sans dire que le gésier est très musculeux, les bandes
musculaires transverses sont fort développées par suite du rôle
qu’elles ont à jouer dans l’acte de la trituration des aliments;
les muscles longitudinaux ont une importance moindre. La
teinte générale de cet organe est jaune pâle.

En ouvrant cette partie du tube digestif on observe, comme
nous l’avons dit plus haut, quatre grosses plaques de consis-
tance cornée-cartilagineuse, d’une coloration jaune de chi-
tine pâle.

Ces plaques, vues de face, présentent l’aspect de quadrila-
tères; toutes les quatre sont placées parallèlement et non pas
deux en avant et deux en arrière, comme M. de Quatrefages les
avait figurées (pl. 4, fig. 5) dans son Mémoire sur les Phlében-
térés. Leur face interne, assez bombée, offre trois séries parallèles de mamelons très marqués réunis entre eux par des
éminences transversales. Les mamelons de la série médiane

(1) Voyez les figures de la partie antérieure du tube digestif de la Bulla (Hamiena) hydatis que nous avons données, planches 11 et 12 de notre travail sur les Bullidés.
sont les plus forts, comme on peut en juger d’après notre figure 9 de notre première planche; notre figure 10 montre encore une de ces plaques, mais vue de profil, position qui fait mieux ressortir la courbure de cet organe masticateur et la succession des sinuosités de sa surface interne. A la partie inférieure de ce dernier dessin on remarque un prolongement cylindrique qui est l’extrémité de l’axe corné-cartilagineux de la face externe de l’organe, et sur lequel se développent les mamelons et sinuosités que nous venons de décrire et qui par leur ensemble constituent la plaque.

Les muscles qui font mouvoir ces organes viennent s’insérer sur la face externe et sur les côtés; quant à la face interne elle sert uniquement à la trituration des aliments.

Dans le gésier du *Pelta*, nous n’avons pas aperçu d’autres plaques chitineuses de moindre importance entre les grosses, comme celles que nous avons signalées chez l’*Haminea hydatis*.

Intestin. — Cette partie du tube digestif paraît conserver le même diamètre dans toute sa longueur; ses parois sont encore moins résistantes que celles de l’œsophage.

L’intestin décrit plusieurs circonvolutions à la surface ou plus ou moins à l’intérieur de la masse hépato-hermaphrodite, puis il vient déboucher à l’extérieur, sur le côté droit du corps, en arrière du point d’insertion de la houppe branchiale. L’épithélium qui le tapisse doit très probablement être garni de cils vibratiles dans toute son étendue; nous n’avons pu toutefois constater la présence de ces derniers organes que dans la dernière partie de l’intestin.

Pour terminer l’étude des organes de la digestion il nous reste à parler du foie. Cette glande, par suite de son union intime avec les autres viscères, ne peut être isolée, et vu la petitesse du *Pelta* il nous a été impossible de reconnaître le nombre et la disposition des conduits excrétateurs. La coloration du foie est jaune brunâtre; ses éléments ou acini examinés sous un fort grossissement présentent la même constitution que ceux du foie des autres Opistobranches.

ARTICLE N° 1.
MOLLUSQUES DES GENRES PELTA ET TYLODINA.

L'organe de Bojanus intimement soudé aux glandes sexuelles offre une teinte jaune très pâle due à la présence de cristaux peu colorés d'acide urique à l'intérieur de chacune de ses cellules.

ORGANES DE LA RESPIRATION ET DE LA CIRCULATION.

La branchie chez le Pelta n'est pas très développée, elle est semi-pennée comme celle de beaucoup de Tectibranches, mais ne possède que trois ou quatre petites lames respiratoires. Le point d'insertion de cet organe se trouve situé sur le flanc droit postérieur de l'animal, entre le pied et le manteau; ce dernier cache en grande partie cette petite plume branchiale et ne laisse voir d'ordinaire que l'extrémité inférieure des trois ou quatre lames respiratoires, comme on peut l'observer sur notre figure 1 (br.).

L'organe de la respiration est mis en rapport avec le cœur par la veine branchiale; en quittant la base de la branchie cette veine contourné la partie antérieure de la masse viscérale pour venir aboutir à l'organe central de la circulation. Celui-ci occupe la région presque médiane de la face antérieure des viscères, il est piriforme et légèrement incliné de droite à gauche.

Le cœur donne naissance à un tronc aortique qui se bifurque tout de suite: l'une des branches, l'aorte antérieure, pénètre dans la première cavité viscérale et distribue le sang dans toute cette région du corps; tandis que l'autre, l'aorte postérieure, passe au-dessus de la masse hépatico-hermaphrodite et se ramifie plusieurs fois pour porter le liquide sanguin dans toutes les parties de cette seconde cavité.

Nous n'avons pu pousser plus loin nos recherches sur l'appareil circulatoire, car l'observation par transparence ne pouvant se faire, il ne fallait pas songer à y suppléer par des injections et des dissections très délicates, même sous une très forte loupe, car avec celle-ci on distinguait à peine le cœur de ce Mollusque.
Ce que nous venons de dire au sujet de l’appareil circulatoire, nous sommes obligé de le répéter pour les organes de la génération; la glande hermaphrodite et ses annexes étant, d'une part, très petits par suite des dimensions exiguës de l'animal, d'autre part, intimement unis au foie et à l'organe de Bojanus, nous n'avons jamais pu en faire une préparation suffisante pour en dessiner l'ensemble avec toute l'exactitude que l'on est en droit d'exiger d'une figure anatomique, et nous devons nous contenter d'en faire une courte description.

Les organes génitaux occupent presque, à l'état normal, toute la moitié droite et un peu antérieure de la masse viscérale. Par l'examen au microscope et sans écraser les viscères, on distingue facilement la présence de la glande hermaphrodite, grâce à sa coloration jaune orangé et à son aspect granuleux. Cette glande est mise en rapport avec les organes annexes au moyen d'un conduit efférent assez court, aplati, décrivant quelques sinuosités contre lesquelles viennent s'appliquer les glandes de l'albumine et de la glaire. Cette dernière glande forme, comme chez beaucoup d'Opistobranches voisins, un corps assez hyalin, cylindrique et un peu recourbé à son extrémité libre; c'est à la base de la glande de la glaire et presque enchâssée dans celle-ci que se trouve la glande de l'albumine, reconnaissable à sa teinte d'un blanc mat et à sa surface légèrement granuleuse. La poche copulatrice est placée un peu en avant de ces deux glandes. Quant au conduit déférent, qui est très court, il vient déboucher sur le flanc droit du Pelta, en avant de la branchie, dans le sillon formé par le pied et le manteau.

En dilacérant avec soin la région de la masse viscérale occupée par la glande hermaphrodite, nous pouvions isoler un certain nombre d'ovules et de spermatozoïdes à divers états de développement.

Les ovules jeunes, d'un jaune hyalin, possédaient un nu-
MOLLUSQUES DES GENRES PELTA ET TYLODÎNÂ. 19

cléus très gros relativement à leur diamètre; mais lorsqu’ils étaient un peu avancés, leur coloration devenait orangée, grâce à la quantité de globules de vitellus nutritif qui entouraient et cachettaient plus ou moins le noyau.

Quant aux éléments mâles, leur observation nous a offert un plus grand intérêt, car nous avons pu en suivre un peu le développement.

Quelques vésicules mâles, en petit nombre, présentaient l’aspect de cellules munies d’un nucléus dans lequel on distinguait plusieurs granulations hyalines (fig. 14); à la périphérie de ces cellules mâles on apercevait un certain nombre de granulations (g.), semblables à celles du nucléus. Aurions-nous eu affaire à des cellules mâles en train d’évoluer et allant donner naissance à des corps mûriformes ? et dans ce cas les granulations arrondies (g.) de la périphérie seraient des noyaux de formation secondaire. Si notre interprétation est juste, nous aurions ici une production endogène de noyaux, comme celle que M. Mathias-Duval a pu observer dans la formation des spermatoblastes chez l’Helix (1).

En dehors de ces cellules mères peu abondantes, on voyait un grand nombre de corps mûriformes ou polyblastes (fig. 15), plus ou moins développés.

Dans notre figure 16, nous avons représenté un polyblaste plus avancé, dont chaque bourgeon ou spermatoblaste (s. s’.) n’est plus rattaché à la cellule primitive que par un pédoncule très délié qui constituerait plus tard la partie antérieure du spermatozoïde. La cellule primitive peut quelquefois se subdiviser et présenter alors l’aspect que nous avons reproduit dans notre figure 17. Les spermatoblastes continuant à s’allonger aux dépens de leur partie renflée, nous arrivons bientôt à avoir autour du restant de notre cellule mère un grand nombre de spermatozoïdes fixés par leur tête (fig. 18) et qui ne tardent pas à se détacher.

(1) Recherches sur a spermatogenèse de l’Helix (Rivue des sc. nat. de Montpellier, n° du 15 décembre 1878).
Organe copulateur. — Chez le Pleurobranche orangé, comme l'a fort bien indiqué M. Lacaze-Duthiers (1), l'organe copulateur est directement en rapport avec les autres organes de la génération par un conduit qui prend naissance sur le canal efférent; il n'en est pas de même chez le Pelta, car ici l'organe copulateur est complètement séparé comme chez les Bullidès, chez les Aplysiadès, etc.

Cet organe est contenu dans la partie antérieure du corps, placé contre les parois de droite de la cavité viscérale, entre ces parois et le bulbe buccal; son orifice est situé dans la rainure du flanc droit du Mollusque, à peu de distance de son extrémité antérieure. En dilacérant l'animal avec soin on parvient facilement à isoler ce corps sans l'endommager.

L'organe copulateur présente l'aspect d'un corps charnu, cylindrique (fig. 13), parfois très renflé en son milieu et toujours replié sur lui-même; sa coloration est d'un beau jaune orangé dans ses deux tiers antérieurs et d'un jaune pâle tacheté de noir dans son dernier tiers; souvent le noir prédomine; alors, avec un faible grossissement, toute cette dernière région paraît être uniformément de cette teinte.

On peut diviser en trois parties distinctes cet organe, et chacune d'elles paraît remplir un rôle différent dans l'acte de la copulation.

La région postérieure (r.p.) possède un diamètre moindre que le reste de l'organe; elle offre extérieurement une teinte, souvent presque noirâtre, duc, comme nous l'avons déjà dit, à la présence d'un grand nombre de ponctuations ou taches noires. Les taches sont formées par de petites granulations pigmentaires placées dans l'épaisseur même des tissus et non à la surface, comme on pourrait le supposer de prime abord. On trouve à l'intérieur de cette région un canal assez étroit, destiné à porter dans la cavité de la région suivante les produits sécrétés par ses parois.

ARTICLE N° 1.
La région médiane \((rm)\), qui est de beaucoup la plus considérable, forme la majeure partie de l'organe copulateur; elle est plus ou moins renflée, suivant l'état de fonctionnement de cet organe chez les individus que l'on examine. Les cellules qui tapissent la cavité interne assez spacieuse de cette région, ont une teinte jaune orangé que masquent fort peu les enveloppes musculaires et conjonctive de l'organe; c'est cette partie vivement colorée qui sécrète le liquide destiné à faciliter l'intromission des spermatozoïdes dans le corps de l'autre individu, probablement aussi à la conservation de ces spermatozoïdes dans l'intérieur de la poche copulatrice.

Dans cette partie médiane nous trouvons une grande quantité de corpuscules mûriformes assez gros, qui sortent par l'orifice pénial dès qu'on vient à presser un peu l'organe. Selon nous, toute cette région glandulaire de l'organe copulateur doit être considérée comme l'homologue de la prostate. En effet, lorsque le pénis est directement en rapport avec le conduit effèrent, comme chez le Pleurobranche orangé ou l'Ombrelle de la Méditerranée, nous observons la présence d'un corps glandulaire distinct (la prostate), versant ses produits dans le canal effèrent; tandis que lorsque l'organe copulateur est complètement séparé des autres annexes, comme chez les Bullidés, Philinidés, Aplysiadés, c'est toujours la partie inférieure de cet organe qui remplit le rôle de glande prostatique.

La troisième région est caractérisée par la présence, dans une sorte de gaine aux parois très musculaires, d'un prolongement conique constitué aussi par du tissu musculaire et formant le pénis \((p.)\).

Cette région n'est nullement glandulaire, sa coloration est orangé pâle. Les parois internes du canal présentent un épithélium vibratile; on voit fort bien le battement de ces cils lorsque l'on comprime un peu un de ces organes fraîchement enlevés.

La cavité de cette région, d'abord du même calibre que celle de la région médiane, devient plus étroite à mesure que
l'on s'approche de l'extrémité du pénis où elle arrive à son minimum de largeur; on ne peut constater la présence de l'orifice externe qu'en regardant cette partie de l'organe copulateur sous un très fort grossissement.

Nous n'avons pas pu observer l'accouplement et la ponte du Pelta, nous ne pouvons donc rien dire sur la forme de leur ruban nidamentaire; jamais un seul de nos individus n'a déposé ses œufs contre les parois du cristallisoir, ce que font cependant au bout de bien peu de temps la plupart des Opi-stobranches que nous conservons dans nos petits aquariums.

SYSTÈME NERVEUX.

Pour terminer cette étude anatomique du Pelta, il nous reste à décrire le système nerveux.

M. de Quatrefages, en s'occupant de cet appareil, dit que le collier œsophagien n'est formé chez ce Mollusque que par deux masses nerveuses distinctes; cet éminent naturaliste ne paraît pas avoir vu que chacune de ces deux masses se subdivisait en trois ganglions rattachés les uns aux autres par de courts connectifs. Grâce au grand nombre d'individus que nous avons eus à notre disposition, nous sommes arrivé à isoler cette partie centrale du système nerveux chez quelques-uns de nos Mollusques, et il nous a été alors possible d'en étudier les diverses parties.

Le collier œsophagien est constitué, comme nous venons de le dire, par trois paires de ganglions reliés les uns aux autres par de courts connectifs (1); les ganglions de droite sont mis en rapport avec ceux de gauche par deux commissures : l'une supérieure, très courte, reliant les ganglions cérébroïdes; l'autre inférieure, d'une longueur notable, allant d'un ganglion pédieux à l'autre. Les connectifs et les commissures,

(1) Nous employons le terme de connectif pour désigner tout tronc nerveux reliant un ganglion quelconque à un autre ne lui étant pas homologue, tandis que nous ne nous servons du terme de commissure que pour indiquer un nerf servant à mettre en rapport deux ganglions homologues.

ARTICLE N° 4.
tous d’une teinte blanc jaunâtre hyalin, ne m’ont paru être le point de départ d’aucun nerf.

Le collier œsophagien est placé immédiatement en arrière du bulbe buccal ; il embrasse l’œsophage, comme l’indique son nom, et se trouve retenu en ce point par les connectifs qui relient les ganglions cérébroïdes aux ganglions buccaux, ainsi que par divers troncs nerveux se rendant dans les parties circonvoisines.

Les ganglions buccaux sont, comme toujours, adhérents à la face postérieure du bulbe buccal, entre la naissance de l’œsophage et l’extrémité du fourreau radulaire.

Les ganglions du collier œsophagien n’offrent pas une teinte générale uniforme ; chez les ganglions cérébroïdes, la coloration est jaune orangé assez pâle, tandis que chez les ganglions pédiœux et chez les ganglions viscéraux la teinte orangée tend à dominer. Les cellules nerveuses de ces divers ganglions sont toutes très grosses, surtout celles des ganglions viscéraux. Le nucléus est toujours très visible dans ces cellules.

Nous allons décrire séparément ces divers ganglions, et indiquer, autant que cela nous a été possible de le constater, le rôle de chacun des nerfs dans l’innervation.

Ganglions cérébroïdes ou sous-œsophagiens (fig. 19, G.). — Ces ganglions sont, chez le Pelta, réunis l’un à l’autre par une commissure blanche hyaline légèrement jaunâtre, très courte, mais assez large. Ils sont presque sphériques ; leur diamètre transversal est un peu plus long que leur autre diamètre ; quelquefois cette forme elliptique est un peu plus accentuée, ou bien encore ces organes sont ovoïdes, la région un peu en pointe étant dirigée vers l’axe longitudinal du corps.

Chacun de ces ganglions se trouve attaché par un très fort connectif au ganglion pédiœux, et est presque accolé au ganglion viscéral.

Voici quels sont les nerfs qui prennent naissance sur ces centres ; nous n’avons pu en suivre la marche, aussi est-ce surtout par analogie que nous croyons devoir leur attribuer les fonctions suivantes :
Les troncs 1, qui sortent du milieu du bord supérieur des ganglions, après un certain parcours se subdivisent chacun en trois branches, devant se ramifier dans les téguments dorsaux qui sont en arrière du bulbe buccal.

Les nerfs 2 se bifurquent presque à leur base : l'une des deux branches (la plus interne) constitue le nerf optique; quant à l'autre, elle se rend probablement dans les tissus voisins de l'œil.

On peut considérer ces troncs 3 comme les homologues des nerfs tentaculaires ou olfactifs, bien que les tentacules fassent complètement défaut au Pelta; ces troncs présentent à leur base un fort renflement fusiforme, et au delà de leur renflement, ils se subdivisent chacun en un grand nombre de nerfs, que nous n'avons pu suivre, mais qui tous se dirigeaient vers la région céphalique.

Les nerfs 4 se rendent vers les parties latérales du corps, et ce doit être une branche du nerf de droite qui innerve l'organe copulateur.

Enfin les nerfs 5 et 6, formés par la bifurcation d'un tronc unique très court, doivent se ramifier dans les tissus qui entourent l'orifice buccal.

Quant aux nerfs ou connectifs qui aboutissent aux ganglions buccaux, ils prennent naissance sur la face antérieure des centres cérébroïdes; nous n'avons jamais pu, dans nos diverses préparations du collier œsophagien, avoir les ganglions buccaux en rapport avec les ganglions cérébroïdes; car ceux-là, fortement rattachés au bulbe buccal, ne pouvaient en être séparés par une simple traction.

C'est pour cette raison que nous avons représenté (fig. 20) ces petits centres nerveux dans un dessin séparé.

Ganglions pédièux (fig. 19, P.). — Comme dimensions, ces ganglions sont presque aussi gros que les ganglions cérébroïdes; leur forme est assez semblable à celle de ces derniers, seulement leur grand diamètre est vertical au lieu d'être transversal.

ARTICLE N° 1.
Les trois troncs qui sortent des parties latérales inférieures de ces ganglions sont :

Le tronc 7, qui se rend dans les tissus des côtés du corps ;

Le tronc 8, ou grand nerf pédieux, qui préside à l’innervation de la majeure partie du pied du Pelta (les 2/3 postérieurs), et donnent par suite de nombreuses ramifications à droite et à gauche ;

Et le tronc 9, ou nerf pédieux antérieur(?), qui se dirige en avant.

Ganglions vscéraux (fig. 19, V. V.). — Ces deux centres nerveux ne présentent pas la même forme ; tandis que celui de droite (V.) est sphérique, celui de gauche (V.) est piriforme. De chacun d’eux, au point opposé à leur insertion sur les ganglions cérébroïdes et pédieux, prennent naissance deux troncs, qui sont de même grosseur (12 et 13) chez le ganglion vscéral de gauche, et de grosseur assez différente (10 et 11) chez celui de droite. Ces divers nerfs se rendent à la partie postérieure du corps, et vont innerver les viscères (cœur, organes de la génération) ainsi que la branchie.

Bien que nous n’ayons pu le constater de visu, il est possible qu’à une certaine distance des ganglions vscéraux, deux de ces troncs, un venant de droite, l’autre de gauche, se réunissent de manière à former une espèce de grande commissure, commissure vscérale, et qu’à leur point de réunion nous ayons un ganglion, duquel partent plusieurs nerfs se rendant aux organes génitaux ; ou bien encore, qu’à leur point de rencontre les deux troncs se soudent sans former de ganglion, mais en donnant naissance à un nerf unique aboutissant toujours aux organes génitaux dans lesquels il se ramifie.

Nous avons signalé, dans notre travail sur l’anatomie des Bullidés, diverses modifications analogues dans la disposition du nerf ou des nerfs génitaux ; il nous semble que c’est surtout de celle qu’offre le système nerveux du Gasteropteron (fig. 48, com. vscér.), que doit se rapprocher la forme de la commissure vscérale du Pelta.

Tel est à peu près ce que nous pouvons dire du système ner-
veux de ce petit Tectibranche. Nous pouvons cependant ajouter que les centres buccaux donnent naissance à un certain nombre de nerfs qui se rendent presque tous dans les tissus du bulbe buccal; deux troncs seulement, partant un de chaque ganglion, se rendent à l'œsophage, doivent le suivre jusqu'au gésier et former, en avant et en arrière de cette région du tube digestif, un plexus nerveux analogue à celui que nous offrent les Bul- lidés (Haminea, Scaphander, etc.) et les Aplysiadés (Aplysia, Notarchus, etc.).

Nous terminerons ce chapitre par quelques mots sur les deux seuls organes des sens que nous avons observés chez le Pelta, les yeux et les otocystes.

Quant aux tentacules, comme ils sont absents chez ce Mollusque, il existe peut-être des organes olfactifs sur les côtés du corps, entre le pied et le manteau, comme chez l'Haminea hydatis et le Doridium Meckelii. Nous regrettons de n'avoir pu nous en assurer en utilisant le seul moyen possible, celui des coupes histologiques. Nous espérons pouvoir bientôt combler cette lacune dans un autre travail spécialement consacré à l'étude de ces organes chez plusieurs types de Mollusques.

Yeux. — Les organes visuels sont relativement assez volumineux; ils sont placés, comme l'a fort bien indiqué M. de Quatrefages, sur les bords de la région céphalique, mais nous n'avons jamais remarqué, chez notre espèce méditerranéenne, qu'ils fussent entourés par une large bande blanchâtre, comme l'a représenté cet éminent naturaliste. Les téguments, dans l'épaisseur desquels se trouvent ces organes, sont bien en ces points dépouvrus de pigment, mais ils conservent encore une teinte jaunâtre hyaline, assez accentuée, qui se continue en avant et en arrière, pour former les deux grandes taches céphaliques que nous signalons plus haut en décrivant l'aspect général de ce Mollusque.

La constitution des yeux ne diffère pas de celle des mêmes organes chez les Opistobranches voisins; c'est toujours un amas de substance pigmentaire noire (noir violet) enveloppant
le renflement capsulaire du nerf optique, et au-dessus de cet amas, un cristallin sphérique.

Otocystes (fig. 21). — Ces organes sont très visibles chez le Pelta, par suite de leurs dimensions ; il est facile de les distinguer, en observant un jeune individu par transparence, sous le microscope.

Ces organes reposent près du sommet de la face postérieure des ganglions pédieux (fig. 19, ot.) ; suivant la position des ganglions cérébriés, ils peuvent être recouverts en partie par ces centres. Les nerfs qui les rattachent aux ganglions cérébriés sont très courts ; je n'ai pu apercevoir exactement leur point d'insertion, ni le renflement signalé et représenté (pl. 6, fig. 9) par M. de Quatrefages.

Il n'existe pas ici, comme chez les Pleurobranchidés, un grand nombre de petits otolithes fusiformes à l'intérieur de ces vésicules auditives ; nous ne trouvons qu'un seul otolithe, complètement sphérique, ayant à peu près, en diamètre, la moitié de celui de la vésicule. Cet otolithe présente, comme le dit fort bien M. de Quatrefages, « des stries noires, rayonnantes, résultant de jeux de lumière produits par des plans partant de son axe, et selon lesquels il se divise lorsqu'on cherche à l'écraser ».

Ce corps calcaire est mis en mouvement par les cils vibratile qui tapisssent les parois de l'otocyste.

Bien que très incomplète, cette monographie du Pelta nous permet de mieux concevoir sa place dans le sous-ordre des Opistobranches-Tectibranches. Il est indiscutable que ce Mollusque appartient à ce grand groupe de Gastéropodes, et qu'il ne peut être placé à côté du Limapontia ou confondu avec ce genre, comme l'ont fait quelques naturalistes.

Doit-il demeurer dans la famille des Pleurobranchidés ? ou faut-il le placer dans celle des Bullidés vrais, avec laquelle il montre de si grandes analogies ? Nous ne le pensons pas.

Il convient mieux d'adopter l'idée de M. Gray, et de former pour le Pelta un groupe à part, que nous désignerons sous le
nom de Peltidæ, puisque la dénomination de Pelta est rendue à ce genre, comme étant la plus ancienne.

Nous croyons devoir placer cette nouvelle famille entre les Bullidés vrais et les Pleurobranchidés; et en cela nous partageons encore l'opinion de M. Gray et de M. G. Jeffreys. Le Pelta possède, d'une part, sur son côté droit, une houppe branchiale cachée par le rebord du manteau, ce qui est un des caractères les plus saillants des Pleurobranchidés; d'autre part, on constate l'absence de tentacules dorsaux, et la présence de pièces masticatrices très fortes, dans l'intérieur de son estomac, caractères qui appartiennent bien au groupe des Bullidés.

Nous pouvons ajouter à ces analogies du Pelta avec ces derniers Mollusques, la possession d'un organe copulateur complètement séparé, situé en avant du corps, près du bulbe buccal, et ayant son orifice dans le sillon du flanc droit, tandis que chez les Pleurobranchus, le pénis est toujours en rapport direct avec le canal efférent, par un conduit distinct, sur le trajet duquel on observe une glande prostatique.

Telles sont les diverses raisons qui nous engagent non seulement à sortir le Pelta de la famille des Pleurobranchidés, dans laquelle Woodward l'avait placé, et à en faire un groupe à part, mais encore à rapprocher davantage cette nouvelle famille de celle des Bullidés vrais, que ne l'avait fait Gray.

NOTES SUR L'ORGANISATION DE LA TYLODINA.

La Tylodina se trouve quelquefois dans le golfe de Marseille, mais si rarement qu'il ne nous a pas encore été donné de prendre nous-même un seul exemplaire vivant de ce Mollusque depuis que nous sommes attaché au laboratoire de zoologie de cette ville; si nous publions aujourd'hui quelques notes anatomiques sur l'organisation de cet Opistobranche, nous le devons à l'obligeance de trois naturalistes qui ont bien voulu nous envoyer chacun un exemplaire de cet animal.

ARTICLE N°1.
MOLLUSQUES DES GENRES PELTA ET TYLODINA. 29

Le premier individu nous a été donné par M. P. Fischer du Muséum. Nous avons pu sur cet exemplaire étudier l’ensemble du tube digestif; les autres organes n’avaient pu résister à l’action incomplètement conservatrice de l’alcool dans lequel il se trouvait depuis plus de trente ans.

C’est à M. le marquis de Monterosato (de Palerme) que nous devons le second exemplaire de ce Mollusque (1). Sur ce deuxième animal, demeuré longtemps hors de l’eau avant d’être mis dans l’alcool, nous ne pûmes observer que l’aspect général, la coquille et revoir la radula.

Enfin, tout dernièrement, M. le professeur Dorhn, directeur de la station zoologique de Naples, voulut bien nous adresser une jeune Tylodina prise au mois de septembre 1882 dans le golfe de Naples (secca di Chiaja) par 60 mètres de profondeur. Nous avons pu revoir sur ce jeune individu les détails anatomiques que nous avions déjà observés sur les deux précédents exemplaires, dessiner l’aspect général de ce Mollusque lorsqu’on lui a enlevé sa coquille, et enfin étudier la disposition du collier œsophagien.

Pour connaître complètement l’ensemble de l’organisation de ce genre, il faudrait encore faire de nouvelles recherches; nous pensons toutefois que les quelques détails anatomiques que nous allons donner, tout en faisant mieux ressortir les analogies de la Tylodina avec les genres voisins et particulièrement le g. Umbrella, ne seront pas inutiles aux personnes assez heureuses pour étudier l’organisation de cet animal sur des individus vivants.

Nous ne pouvons rien dire de l’aspect que présente l’animal de la Tylodina lorsqu’il est en marche, et nous devons donc nous en rapporter, jusqu’à nouvel ordre, à ce qu’en a dit Joannis dans sa note sur la Tylodina citrina (2).

Ainsi ce naturaliste signale l’existence de quatre tentacules chez ce Mollusque, une paire postérieure et une paire antérieure; il ne nous a pas été possible d’observer cette dernière

(1) Cette Tylodina avait été pêchée près de Civita-Vecchia par M. Donato.
(2) Dans le volume de 1833 du Magasin de zoologie de Guérin-Méneville.

paire de tentacules chez aucun de nos trois individus. Il est vrai que Joannis dit que les tentacules antérieurs sont plus courts et plus petits que les postérieurs ; cela expliquerait en partie notre insuccès, surtout si la différence de grosseur était aussi considérable que celle que l'on remarque entre les tentacules antérieurs et postérieurs de l'Umbrella mediterranea.

Avant d'aborder l'étude anatomique de cet Opistobranche, nous allons établir la diagnose générique, car celle donnée par Philippi en 1836 est actuellement bien incomplète et même inexacte en divers points.

Animal rampant, oblong, presque complètement rétractile sous sa coquille ; son pied volumineux est plat au-dessous, tronqué en avant, obtus en arrière (d'après la figure de Joannis il se terminerait en pointe). Tête distincte, allongée et bifide en avant, munie de lobes tentaculiformes ou tentacules labiaux, bouche à sa partie inférieure. Les tentacules vrais ou rinophores, allongés, fendus sur toute leur longueur du côté externe ; à leur base et du côté interne se trouvent les yeux cachés en partie dans l'épaisseur des teguments. La branchie, située sur le côté droit de l'animal entre le pied et le manteau, offre l'aspect d'une feuille ovale, pointue, libre sur la majeure partie de sa longueur et bipinnatifide. L'anus est placé en arrière du point d'insertion de la branchie. L'orifice des organes de la génération est toujours dans le sillon de droite, en avant de l'organe respiratoire, très près de la bouche.

Coquille externe, un peu oblongue, d'une faible épaisseur, membraneuse calcaire ; sa partie conique est assez solide et lisse, tandis que ses bords moins résistants sont formés de lames délicates (lames d'accroisement), fendillées et imparfaitement soudées entre elles à la face externe.

Nous ne donnerons pas de diagnose spécifique, attendu que nous croyons avoir eu affaire à deux espèces différentes, comme nous le disons plus loin en faisant la description de la radula, mais que sur ces trois exemplaires, l'un d'eux n'avait pas sa coquille et un autre nous a paru être trop jeune pour servir de type.
Coquille. — La coquille est chez ce Mollusque proportionnellement plus grande en étendue et en profondeur que celle dont est munie l’Umbrella ; elle est de nature calcaire ; sa forme générale rappelle surtout la coquille de certaines Patella ou mieux encore de la Calyptraea sinensis, cependant elle est toujours un peu oblongue au lieu d’être complètement ronde, et son premier tour de spire est plus rudimentaire que celui de cette espèce de Calyptraea.

Sa coloration générale est jaune, toutefois cette teinte n’apparaît à la face externe qu’à son sommet, et à la face interne dans le fond de la cavité. Sa teinte fondamentale est masquée dans le reste de sa surface extérieure par une substance de même nature, d’aspect papyracé, comme feuilleté, d’un rouge vineux sombre, constituant la première formation coquillière de laquelle proviendra le test définitif (fig. 22).

Cette substance feuilletée ou papyracée se fendille très facilement sur ses bords, ce qui donne à la coquille un aspect tout particulier que dans notre dessin nous avons essayé de rendre en l’accentuant.—On remarque que ces sortes de feuilllets se relèvent un peu suivant leurs bords libres et forment par leur ensemble plusieurs ellipses concentriques correspondant aux stries d’accroissement de cette coquille.

A la face interne nous n’avons plus que le dernier tour (fig. 23) d’exclusivement formé par cette substance calcaire-papyracée, tout le reste, qui a une consistance d’abord assez faible par suite de son peu d’épaisseur, est très hyalin, ce qui permet de voir par transparence les feuilllets rougeâtres de la face externe ; puis peu à peu, en se rapprochant du fond de sa concavité, la coquille devient plus épaisse, elle prend une teinte jaune et possède alors un revêtement très lisse, légèrement nacré.

Les taches rouge vineux de la partie feuilletée peuvent être localisées en certains points et former des espèces de bandes rayonnantes plus ou moins larges; ou bien, comme chez la coquille que nous avons représentée, la teinte rouge vineux peut être générale, si ce n’est vers le sommet qui dans les
deux cas est toujours d'une belle coloration jaune ambree.

Ces particularités correspondaient-elles à des différences spécifiques, ou bien n'ont-elles aucune importance au point de vue systématique? C'est ce que nous ne pouvons décider ici faute d'un nombre suffisant d'exemplaires bien conservés.

Passons maintenant à la description de l'animal.

Aspect général.

Dans notre figure 25, nous avons représenté notre troisième exemplaire de Tylodina dépourvu de sa coquille, pour montrer son aspect général.

Au milieu de la face supérieure de ce Mollusque, on remarque le manteau qui est aussi rudimentaire que celui de l'Umbrella et qui prend exactement la forme de la face interne de la coquille. Cet organe, par suite de ses dimensions assez restreintes, laisse largement dépasser les téguments pédiens tout autour de ses bords; il en est de même sur le côté droit, pour une bonne partie de la houppe branchiale, et en avant, pour toute la région frontale. La forte contraction qu'a subie cet individu sous l'action de l'alcool, a rejeté en arrière le voile buccal (lobes tentaculiformes?), ce qui a mis à découvert l'orifice de la bouche et toute la partie antérieure du pied.

Le manteau présente, comme chez l'Umbrella, un épaississement musculaire à sa face externe ou supérieure, à peu de distance de ses bords et décrivant une circonférence ir régulière; c'est par cet épaississement que la coquille est rattachée au manteau. Les téguments de toute la surface contenue à l'intérieur de cette circonférence musculaire sont très minces, ce qui permet de distinguer par transparence les organes placés immédiatement au-dessous (le péricarde en avant et à droite, la masse hépatique en arrière et à gauche, et entre eux une partie de l'organe de Bojanus). Dans l'épaississeur de cette partie du manteau, nous n'avons pas pu observer s'il existe une glande analogue à celle que nous avons étudiée chez l'Umbrella.

Nous ne pouvons donner de détails bien certains sur la coloration des téguments, cependant il est probable que ceux-ci...
ont une teinte voisine de celle de la coquille, car chez deux de
nos individus les tissus étaient d’un rouge vineux pâle et le
manteau offrait dans ces deux cas des bandes rayonnantes d’un
rouge assez intense près des bords.

Comme nous l’avons dit au commencement de ce para-
graphe, le manteau n’est pas plat en son milieu, il ne présente
pas non plus de dentelures sur ses bords, comme celui de
l’Umbrella ; les bords nous paraissent être continus, et en son
milieu, ou plutôt un peu en arrière du centre, cet organe
présente un petit mamelon conique dont la pointe est rejetée
vers le côté gauche, pointe qui correspond au fond de la con-
vité de la coquille.

Quant au pied, il n’offre rien de particulier en dehors de son
développement musculaire excessif ; il est ovale, la partie la
plus en pointe étant en arrière ; sa face dorsale n’est nullement
mamelonnée, elle est lisse et probablement elle doit présenter
le même aspect sur l’animal vivant. La face inférieure de cette
partie du corps de la Tylodina est de même complètement unie.

Nous ne croyons pas que ce Mollusque puisse jamais, avec
son pied, contracter une bien grande adhérence contre les
corps sur lesquels il se trouve ; il doit en être pour la Tylodina
comme pour les Pleurobranchus et le genre Umbrella, lorsqu’on
vient à tracasser l’animal, il doit se laisser aller au fond de
l’eau et se dérober ainsi aux attaques de ses ennemis.

Si maintenant nous enlevons avec soin le manteau, nous
mettons à nu, à droite et en avant, la cavité péricardique au
milieu de laquelle se trouve le cœur en forme de losange ; au-
dessous et toujours à droite, nous avons les glandes annexes de
la reproduction et un peu plus en avant l’organe copulateur.
Ce dernier organe nous a paru être chez la Tylodina complète-
ment isolé et nullement rattaché aux annexes de la reproduc-
tion, comme cela s’observe chez l’Umbrella ; nous n’avons pu
observer sa structure interne, nous avons seulement constaté
qu’il offrait extérieurement l’aspect d’un corps cylindrique,
replié une fois sur lui-même et un peu renflé à son extrémité
en caecum.
Nous n'avons pu isoler la glande hermaphrodite qui, tout en occupant la face latérale droite du foie, nous a paru offrir avec ce dernier organe une union plus intime que cela n'a lieu chez l'Umbrella. La glande de Bojanus formait entre le foie et le péricarde une masse spongieuse blanchâtre qui recouvrait la majeure partie de l'estomac.

Cette portion du tube digestif occupait le fond de la cavité viscérale, s'appuyant directement sur les tissus musculaires du pied ; elle était dirigée d'avant en arrière et de gauche à droite. Lorsque les organes de la reproduction sont en plein fonctionnement, ce qui n'était pas le cas pour notre jeune individu de Naples, l'estomac doit être rejeté vers le côté gauche. — La cavité stomacale est mise en rapport avec le bulbe par un œsophage assez court, s'appliquant contre les téguments pédieux, traversant le collier œsophagien et se relevant un peu pour atteindre la partie postéro-supérieure du bulbe. En arrière l'estomac se continue pour former la région intestinale ; celle-ci, après avoir reçu les produits de sécrétion du foie, se dirige vers la gauche, décrit quelques circonvolutions dans la masse hépatico-hermaphrodite et vient déboucher à l'extérieur immédiatement après le point d'insertion de la branchie.

Telle est à peu près la disposition des viscères les uns par rapport aux autres. Nous allons maintenant faire une courte description des seuls organes que nous ayons pu un peu étudier : le tube digestif, la branchie et le système nerveux.

TUBE DIGESTIF.

Chez les trois individus de Tylodina que j'ai eus à ma disposition, c'est le tube digestif qu'il m'a été permis d'observer le mieux.

L'orifice buccal se trouve, à la partie antérieure de ce Molusque, au fond d'un vaste vestibule formé par le voile buccal et le prolongement antérieur du pied ; cet orifice est arrondi et conduit presque immédiatement les substances alimentaires.
MOLLUSQUES DES GENRES PELTA ET TYLODINA. 35
dans l'intérieur de la bouche. Il ne paraît pas exister de trompe pouvant être projetée à l'extérieur, comme cela s'observe chez les Pleurobranchus (particulièrement le *Pl. testidunarius*); s'il y en a une, elle est ici très rudimentaire.

A l'entrée de la bouche nous trouvons un anneau résistant, analogue à celui que présente l'*Umbrella*, et formé comme lui par un grand nombre de papilles chitineuses. Ces papilles, d'une teinte jaune pâle, sont très serrées les unes contre les autres et donnent à cet anneau l'aspect de deux mâchoires d'*Aplysia* (*Aplysia depilans* par exemple) intimement soudées à leurs parties supérieures et inférieures.

Bulbe buccal. — La forme de cette première partie du tube digestif rappelle celle du bulbe de presque tous les Opistobranches; c'est un tronc de cône un peu aplati, présentant à l'extrémité de sa face inférieure un prolongement, une espèce de petit mamelon (*m*), qui est le fourreau radulaire. L'oesophage prend naissance un peu au-dessus de ce mamelon, et entre ces deux parties se trouvent les ganglions buccaux.

Sur les côtés et toujours vers sa face postérieure nous avons les *glandes salivaires* au nombre de deux, parfaitement indépendantes l'une de l'autre. Ces glandes ne se prolongent pas le long de l'oesophage, pour aller épanouir leurs digitations sur les parois du foie et entre les lobes de cet organe, comme M. Lacaze-Duthiers l'a observé chez le Pleurobranch orange. Ces organes ne viennent pas davantage occuper la face inférieure de la cavité viscérale, au-dessus du bulbe, et souder leurs ramifications glandulaires aussi bien au-dessus comme au-dessous de l'oesophage, ce qui a lieu chez l'*Umbrella*; ils forment chez la *Tylodina* deux petits amas multilobés, triangulaires, appliqués contre les parois extérieures latérales du bulbe buccal.

Dans notre figure 30 (*g. s.*) nous avons représenté seulement la glande de droite.

Y a-t-il en dehors de ces deux organes une troisième glande salivaire analogue à celle que présente le Pleurobranch orange ainsi que l'*Hydatina physis*? Nous ne le croyons pas; nous au-
rions certainement aperçu le conduit excrèteur de cette glande impaire chez l’une de nos trois Tylodina.

Les parois latérales du bulbe buccal sont très musculaires, et antérieurement un grand nombre de muscles rattachent cet organe aux téguments circumbuccaux.

Si nous ouvrons le bulbe nous voyons que la cavité est assez spacieuse ; nous ne parlons pas de la coloration de l’épithélium qui tapisse ses parois, puisque nous n’avons eu que des individus ayant séjourné plus ou moins de temps dans l’alcool.

Au fond de cette cavité se trouve le mamelon musculaire sur lequel s’épanouit la radula ; ce mamelon, très volumineux, ne nous a pas présenté de sillon médian longitudinal, comme celui que l’on voit très nettement chez tous les Pleurobranches.

La radula est très large et assez longue chez ce Mollusque ; nous avons représenté (fig. 31), à un grossissement d’environ six fois en diamètre, celle du gros exemplaire de Tylodina qui nous a été donné par M. Fischer.

Cet organe offre à sa partie antérieure une teinte excessivement brune qui pâlit peu à peu et devient jaune très clair dans sa portion encore contenue dans le fourreau.

La radula est composée d’ordinaire d’une centaine de rangées de dents ; ce nombre varie nécessairement suivant l’âge de l’individu, ainsi chez la jeune Tylodina du golfe de Naples nous n’avons compté que quatre-vingts rangées, tandis que le gros exemplaire en présentait plus de cent trente, et celui du marquis de Monterosato environ une centaine. On observe aussi une certaine variation dans le nombre des dents d’une seule rangée ; cette variation, qui est même très grande entre l’individu du golfe de Naples et les deux autres Tylodina, nous fait supposer que nous avons affaire à deux espèces distinctes. Ainsi, tandis que la formule dentaire de notre jeune individu était 40, 1, 40, c’est-à-dire 40 dents latérales de chaque côté d’une seule dent médiane, celle des deux autres offrait 80 à 85 dents latérales, toujours sur les côtés d’une seule dent...
MOLLUSQUES DES GENRES PELTA ET TYLODINA. 37

médiiane (85, 4, 85). La forme des dents latérales présentait en outre des différences assez sensibles.

Nous avons dessiné dans notre figure 32, à un grossissement de cent cinquante fois en diamètre, un fragment de deux rangées consécutives pris sur la radula de la Tyloodina que nous devons à l'obligeance du marquis de Monstrosato; puis nous donnons (fig. 33) à un plus fort grossissement (environ quatre cents fois) trois dents latérales vues de profil. La dent a était placée très près de l'axe médian longitudinal de la radula, elle est surtout caractérisée par les prolongements pariétaux de sa partie supérieure et la forme assez crochue de sa pointe; la dent b, prise plus près du bord externe que de la ligne médiane, présente une pointe crochue plus forte, mais elle est moins longue et n’offre comme trace des prolongements pariétaux de la dent a qu’un simple bourrelet sur les deux tiers de la longueur duquel viennent s’insérer les fibrilles musculaires qui la font mouvoir; enfin la dent c, qui provient même de l’extrémité externe d’une rangée, est moins grosse que les deux précédentes, elle a presque la forme d’un triangle isocèle dont le sommet serait sa pointe qui n’est ici nullement crochue.

Chez la Tyloodina prise dans le golfe de Naples, les dents latérales sont toutes plus crochues, même celles qui occupent les extrémités de chaque rangée.

Quant à la dent médiane elle est toujours très rudimentaire, on dirait qu’elle tend à disparaître chez ce Mollusque; en l’observant sous un très fort grossissement on remarque que ses contours sont assez indécis, et cela, joint à sa petitesse, rend très difficile sa représentation. N’étant jamais parvenu à en faire un dessin convenable, nous n’avons pu la figurer à côté des trois dents latérales a, b et c.

L'œsophage n’offre rien de particulier; ses parois sont peu résistantes, son diamètre assez petit et sa longueur est à peine deux fois celle du bulbe. À son point de jonction avec l’estomac il subit un étranglement plus ou moins accentué suivant le degré de contraction des tissus.

Estomac. — Quant à l’estomac il est oviforme et aplati sur
ces deux faces supérieure et inférieure (cet aplatissement que nous avons remarqué chez nos trois individus, pourrait bien être dû à l'action de l'alcool sur l'ensemble des téguments de ces Mollusques et surtout sur les téguments dorsaux qui, étant beaucoup moins épais, ont offert peu de résistance pour se contracter et presser par suite sur tous les viscères).

Cet organe présente extérieurement une teinte blanche rosée, très luisante ; ses parois sont constituées par deux couches musculaires : l'une extérieure, assez épaisse, formée de muscles transverses ; l'autre intérieure, de muscles longitudinaux. A l'intérieur de ces deux couches musculaires et tapissant toute l'étendue des parois stomacales, nous trouvons un épithélium supportant de nombreuses papilles chitineuses, analogues à celles que l'on remarque dans l'estomac de l'Umbrella mediterranea, mais proportionnellement moins longues. Ces papilles, d'une teinte violacée, ne sont pas disposées irrégulièrement à la surface de l'épithélium, elles forment un grand nombre de rangées longitudinales, correspondant aux bandelettes musculaires dirigées dans ce sens ; ces rangées ne sont pas toutes parallèles, souvent on les voit s'anastomoser avec les rangées voisines et présenter alors l'aspect d'un réseau.

Nous donnons, figure 34, à un grossissement d'environ 60 fois, un fragment de l'estomac, où l'on peut remarquer la disposition de toutes ces papilles implantées les unes à la suite des autres sur ces sortes de bourrelets ; l'épithélium qui cachait les muscles transverses dans l'intervalle de ces bourrelets n'a pas été représenté. Notre figure 24 représente à un plus fort grossissement quelques-unes de ces papilles avec un fragment d'épithélium.

Cet ensemble de pièces chitineuses forme une véritable armature qui facilite la trituration et par suite la digestion des aliments. Il nous est impossible de dire quelles sont les substances dont se nourrissent les Tylodina ; mangent-elles des éponges (le Suberites domuncula ou d'autres espèces) comme les Umbrella, ou bien leur nourriture est-elle végétale ?

ARTICLE N° 4.
Quant à l'intestin qui décrit plusieurs circonvolutions dans la masse hépatique, nous n'avons pu le suivre et le dégager complètement; nous savons seulement que sa partie rectale longe les parois à l'extérieur desquelles est adossée la branchie, et vient déboucher en arrière de l'organe respiratoire, en formant un petit prolongement que l'on peut voir dans notre figure 29 (an.). C'est donc par erreur que Rafinesque donnait dans sa diagnose le côté droit du cou comme position de l'anus, il avait pris l'orifice de la génération pour l'ouverture postérieure du tube digestif, et n'ayant pas vu le véritable anus, il ajoutait que l'orifice des organes génitaux lui était inconnu.

BRANCHIE.

L'organe respiratoire de la *Tylodina* offre assez d'analogie avec celui de l'*Umbrella*, il serait proportionnellement moins long mais plus large; ainsi l'on peut voir sur notre figure 25 que cet organe occupe environ les deux tiers postérieurs de la longueur du flanc droit, tandis que chez l'*Umbrella* la branchie s'étend d'une extrémité à l'autre du bord droit du manteau, puis contourne, sur toute sa longueur, le bord antérieur décrivant une demi-circonférence.

L'insertion de cet organe commence immédiatement en arrière de l'orifice de la génération et se prolonge jusqu'à l'ouverture anale.

La houppe branchiale se compose (fig. 29) d'un axe longitudinal sur chaque côté duquel prennent naissance un certain nombre d'axes secondaires (6 ou 7 de chaque côté) supportant de petites digitations. Nous avons donc une plume branchiale bipinnatifide analogue à une partie de celle de l'*Umbrella*.

Les digitations situées du côté interne sont moins développées que celles du côté externe.

SYSTÈME NERVEUX (fig. 35).

Nous arrivons à l'étude du système nerveux en regrettant de ne pouvoir rien dire sur les appareils de la circulation et de la génération.
Collier œsophagien (1). — Celui-ci est placé comme toujours immédiatement en arrière du bulbe buccal; il se compose d'une paire de ganglions cérébroïdes et d'une paire de ganglions pédièux. L'absence d'une paire de ganglions viscéraux dans le collier œsophagien de la Tylodina constitue un caractère différentiel d'une certaine importance entre ce Mollusque et le genre Umbrella.

Les centres nerveux sont reliés entre eux par des connectifs si courts, qu'ils semblent être les uns sur les autres. Nous nous sommes même demandé tout d'abord si, à droite et à gauche, entre ces ganglions, nous n'avions pas de centres viscéraux; ce n'est qu'après un examen très minutieux, malheureusement fait, comme nous le disons en commençant, sur un seul individu de petite taille (celui de Naples), qu'il nous a été possible de constater leur absence; les renflements que nous avions remarqués des deux côtés n'avaient aucune relation avec les centres pédièux et ne dépendaient que des ganglions cérébroïdes. S'il existait réellement une paire de ganglions viscéraux, il est très probable que nous aurions observé, comme dans le collier œsophagien de l'Umbrella, une commissure les reliant entre eux au-dessous du tube digestif.

Nous n'avons pu distinguer que deux commissures : l'une supra-œsophagienne, reliant les ganglions cérébroïdes l'un à l'autre; l'autre infra-œsophagienne, mettant en rapport les ganglions pédièux; ces deux commissures sont assez courtes mais volumineuses. Il existe probablement une ou deux autres commissures inférieures (la commissure cérébroïde sous-œsophagienne et la petite commissure pédièuse); il nous a été impossible de les apercevoir dans notre dissection de ce petit Mollusque conservé dans l'alcool depuis six semaines, nous avons dû les arracher en dilacérant les prolongements glandulaires qui entourèrent le collier œsophagien et dont il est difficile de se débarrasser. Ces prolongements glandulaires nous paraissent faire partie d'un ensemble de glandes à mucus, venant s'ouvrir à l'extérieur autour de l'orifice buccal; elles sont ana-

(1) Voyez la note qui se trouve à la fin de ce Mémoire.

ARTICLE N° 1.
MOLLUSQUES DES GENRES PELTA ET TYLODINA. 41

logues à celles que nous avons signalées chez le Gastéropétron et le Doridium sous la dénomination de glandes circumbuc-
cales (1) et que nous retrouvons chez le Pelta.

Étudions maintenant en détail les diverses parties du collier œsophagien.

Ganglions cérébroïdes. — Ces ganglions sont assez volu-
mineux relativement aux dimensions de l'animal, cela doit tenir à l'absence complète de ganglions viscéraux ; ils sont un peu piriformes et offrent, surtout à leur face postérieure, une proéminence assez forte.

Il nous a été impossible de conserver les connectifs qui relient les ganglions cérébroïdes aux ganglions buccaux, et de pouvoir, par conséquent, représenter dans notre figure 35 ces petits centres directement en rapport avec le collier. On pourra voir cependant sur notre figure 30 ces ganglions attachés au bulbe buccal, et remarquer qu'il existe entre eux un écartement assez considérable ; l'un et l'autre donnent naissance à un cer-
tain nombre de nerfs qui se ramifient dans les tissus du bulbe, ou qui longent l'oesophage.

Voici quels sont les nerfs qui naissent des ganglions céré-
broïdes et dont nous avons pu observer avec soin le point de départ.

1, 1. Ces troncs, ainsi que les deux suivants, sortent du bord supérieur de ces ganglions, ils se rendent dans les tenta-
cules à la base de chacun desquels ils doivent former très probablement un petit ganglion analogue à celui que M. Mo-
quin-Tandon a représenté chez l'Umbrella ; ils donnent peut-
être aussi des ramifications au voile buccal.

2, 2. Nerfs se rendant aux organes visuels.

3, 3. Ces troncs innervent les tissus voisins de l'ouverture de la bouche.

4, 4. Ces nerfs volumineux prennent naissance à la face postérieure des ganglions cérébroïdes ; nous croyons pouvoir les regarder, par suite de leur position, comme des nerfs viscé-

(1) Anat. des Bulidés, p. 33 et 88, pl. 7, fig. 62.
raux; ce sont eux qui doivent innérer les organes de la génération et la branchie.

5, 5. Ces troncs nerveux, aussi gros que les précédents, doivent se ramifier dans les parties latérales du corps, et probablement c'est une branche de celui de droite qui doit se rendre à l'organe copulateur.

6, 6, 7, 7. Ces différents nerfs vont se perdre dans les téguments dorsaux.

Ganglions pédi eux. — Leurs dimensions sont un peu inférieures à celles des centres sus-cesophagiens, ils seraient aussi moins arrondis; cependant toutes les différences que nous signalons sont sujettes à caution, notre examen n'ayant pu se faire, comme nous l'avons déjà dit, que sur un seul individu conservé dans l'alcool.

Nous n'avons remarqué que deux nerfs sortant de chacun de ces ganglions (8, 8 et 9, 9); ces troncs doivent innérer les tissus du pied.

ORGANES DES SENS.

Tentacules. — En dehors de la paire de tentacules que l'on voit en avant du manteau, entre celui-ci et le bord du voile buccal, existe-t-il une seconde paire d'organes analogues mais plus petits, comme l'a représenté Joannis, en 1833, dans son travail sur la Tylodina citrina? Cette seconde paire de tentacules semblerait être placée sur le rebord du voile buccal, si l'on s'en rapporte aux deux figures (fig. 4 et 5) données par ce naturaliste. — Probablement les parties tout à fait latérales du voile constituent cette seconde paire de tentacules que Philippi désigne dans sa diagnose sous le nom de lobes tentaculiformes, et que nous croyons pouvoir considérer comme les homologues des tentacules labiaux des Éolididés; ces tentacules ne doivent pas ressembler toutefois aux véritables petits tentacules que M. Moquin-Tandon a observés près de l'orifice de la bouche de l'Umbrella et qui sont complètement indépendants des lames péribuccales de ce Mollusque.
Les tentacules dorsaux sont moins allongés que ceux de l'*Umbrella* et diffèrent encore par leur forme générale et leur structure interne; ces organes seraient, chez la *Tylochina*, plus massifs, presque triangulaires, rappelant l’aspect d’une feuille lancéolée, épaisse, très large et peu longue, qui serait repliée suivant son axe longitudinal. Il est vrai que la forme présentée par ces organes n’est peut-être pas la véritable, car à l’état vivant ces tentacules devaient certainement avoir une largeur et une épaisseur moins considérables, mais une longueur double, et présenter une forme moins aplatie, si même ils n’étaient pas cylindriques.

Le dessin que nous donnons de l’un d’eux (fig. 27) fera encore mieux comprendre que notre explication l’aspect général de cet organe.

Si nous venons à dédoubler un de ces tentacules suivant son axe longitudinal (fig. 28) nous voyons qu’il présente à son intérieur, sur ses deux faces, des lamelles transversales analogues à celles que l’on observe chez l’*Umbrella*. Seulement ces lamelles, au lieu d’être localisées en un point de la surface interne, comme chez ce dernier Mollusque, sont disposées chez la *Tylochita* sur toute l’étendue de cette surface, ce qui doit augmenter la puissance olfactive de ces organes.

Organes visuels. — Les yeux n’arrivent pas à la surface externe des téguments, on peut à peine les distinguer à la base des tentacules dorsaux. Leur forme est celle d’un ellipsoïde, peu allongé, offrant à l’intérieur de sa cavité un cristallin arrondi, au-dessous et autour duquel se trouve une certaine quantité de pigment noir; c’est au milieu de ce pigment, à la base de l’ellipsoïde, que vient s’épanouir le nerf optique.

Otocystes. — Les vésicules auditives ont une position et une forme tout à fait analogues à celles que présentent ces organes dans le genre *Umbrella*. Elles reposent près du sommet de la face antérieure des ganglions pédièux et adhèrent aux enveloppes de ces centres nerveux. Bien que nous n’ayons pu suivre les nerfs auditifs jusqu’à leur point d’insertion sur les ganglions cérébroïdes, il n’est pas douteux qu’ils soient en rapport direct
A. VAYSSIÈRE.

avec ces ganglions, comme cela a lieu chez l’Umbrellá. Ce fait que le nerf auditif prend toujours naissance chez les Mollusques sur les centres cérébroïdes a été démontré simultanément depuis une douzaine d’années par deux éminents naturalistes, MM. Lacaze-Duthiers (1) et F. Leydig (2).

L’otocyste de la Tylodina est légèrement ovale et présente à son intérieur de nombreux otolithes, un peu fusiformes comme ceux de l’Umbrella, mais toutefois moins abondants que dans les otozystes de ce dernier genre.

Les quelques notes que nous venons de donner sur l’organisation des Tylodina montrent qu’il existe de nombreux points de similitude entre ces Mollusques et l’Umbrella, et malgré quelques différences que nous avons signalées et qu’il faudrait encore revoir, nous croyons que ces deux genres doivent demeurer l’un à côté de l’autre, comme on les a placés jusqu’à ce jour.

Au moment de corriger les dernières épreuves de ce travail, nous avons été assez heureux pour nous procurer une Tylodina pêchée en janvier 1883 dans le golfe de Marseille. Sur cet individu assez gros nous avons pu faire une étude assez complète des centres nerveux, ce qui nous permet de rectifier une erreur d’une certaine importance, que nous avons faite page 40, au sujet de la non-existence des ganglions viscéraux. Le collier œsophagien présente, en effet, en dehors des deux ganglions cérébroïdes et des deux ganglions pédiens, plusieurs ganglions viscéraux placés comme toujours à la face postérieure du collier et dont la commissure passe sous l’œsophage parallèlement à celle qui relie les ganglions pédiens.

Nous ne referons pas ici la description de cet appareil, mais nous renvoyons le lecteur pour tout ce qui concerne les centres nerveux de ce mollusque à un prochain travail que nous publierons sous peu sur tous les Tectibranches du golfe de Marseille.

(1) Archives de zoologie expérimentale, t. I, p. 470 à 500, 1872.
EXPLICATION DES FIGURES

Pelta coronata.

Fig. 1. Ce petit Mollusque vu par la face dorsale; *br*, branchie. Grossissement 12 fois en diamètre.

Fig. 2. Le même individu vu par sa face ventrale. Gross. 12.

Fig. 3. L'ensemble des organes de la digestion et de la reproduction complètement isolés, pour donner une idée de leur position respective dans l'intérieur du corps de cet animal: *B*, bulbe buccal; *gs*, glandes salivaires; *G*, estomac armé ou gésier; *He*, masse hépatico-hermaphrodite; *Os*, organes annexes de la reproduction. Gross. 20.

Fig. 4. Partie antérieure du tube digestif, de profil. Bulbe buccal avec les mâchoires *m* et la radula *r* que l'on aperçoit par transparence; l'œsophage *OE*, les glandes salivaires *gs*, et le gésier *G*, dont on distingue bien en avant les quatre mamelons correspondant à la partie antérieure des quatre grandes plaques masticatrices; l'intestin *I*, le fourreau de la radula *f* et les ganglions buccaux *buc*. Gross. 35.

Fig. 5. Une des deux glandes salivaires isolée. Gross. 50.

Fig. 6. Une rangée de dents de la radula; la dent médiane et la dent latérale de droite sont vues dans leur position normale, la dent latérale de gauche a été rejetée en arrière et un peu par côté, pour mieux montrer les denticules de son bord externe. Gross. 220.

Fig. 7. Une des deux mâchoires à un grossissement d'environ 150 fois, toujours en diamètre.

Fig. 7 bis. Quelques denticules isolés de l'organe précédent. Gross. 400.

Fig. 8. Glandes à mucus qui entourent le bulbe buccal et qui débouchent à l'extérieur près de l'orifice de la bouche. Gross. 76.

Fig. 9. Une des quatre plaques masticatrices du gésier vue de face. Gross. 60.

Fig. 10. La même plaque vue de profil. Gross. 60.

Fig. 11. Un débris des téguments dorsaux vu par transparence, pour montrer les divers éléments qui constituent le manteau: *ep*, couche épithéliale munie de cils vibratiles et présentant des corps chitineux *c* dans son intérieur; *m*, cellules hyalines à mucus; *p*, trainées pigmentaires d'un noir violet répandues sous l'épiderme; *a*, cellules à contenu calcaire formant, par leur accumulation en certains points, les petites taches blancâtres du *Pelta*. Gross. 500.

Fig. 12. Quelques-unes de ces cellules calcaires *a*, vues avec un plus fort grossissement.

Fig. 13. Organe copulateur: *rp*, région postérieure; *rm*, région moyenne; *p*, pénis; *m*, *m', m''*, quelques muscles destinés à faire entrer ou sortir la région antérieure *p* de cet organe. Gross. 45.

Fig. 14. Premier état des cellules mâles: *g*, granulations périphériques. Gross. 200.

Fig. 15. Corps muriforme mâle ou *polyblaste*. Gross. 260.

ANN. SC. NAT., ZOO., JANVIER 1883. XV. 4. — ART. N° 1.
Fig. 16. Le même corps plus développé : s, s', spermoblastes. Gross. 250.
Fig. 17. Polyblaste dont la cellule primitive s'est subdivisée en quatre. Gross. 280.
Fig. 18. Polyblastes très avancés dont les spermoblastes ne tarderont pas à se détacher. Gross. 350.
Fig. 19. Collier œsophagien du Pelta, vu par sa face postérieure à un grossissement d'environ 50 fois : C, gangl. cérébroïdes; P, gangl. pédiéux; V, V', gangl. viscéraux; ot, otocystes. (Voy. le texte pour l'explication des nerfs.)
Fig. 20. Ganglions buccaux vus au même grossissement.
Fig. 21. Un des deux otocystes isolé, montrant à l'intérieur de sa cavité son unique otolithe. Gross. 240.

Tylodina.

Fig. 22. Coquille vue par sa face externe. Gross. 2.
Fig. 23. La même, vue par sa face interne. Gross. 2.
Fig. 24. Quelques-unes des pièces chitineuses des parois stomacales. Gross. 300.
Fig. 25. La Tylodina (de Naples) dépouillée de sa coquille et vue par sa face dorsale. Gross. 5.
Fig. 26. Partie antérieure ou région frontale de notre plus grand exemplaire de Tylodina. Gross. 4.
Fig. 27. Tentacule dorsal vu extérieurement. Gross. 10.
Fig. 28. Moitié du précédent tentacule, pour montrer les lames olfactives qui garnissent sa face interne. Gross. 10.
Fig. 29. La branchie : an, prolongement anal. Gross. 12.
Fig. 30. Tube digestif de notre gros exemplaire : gs, glande salivaire; m, mamelon formé par le fourreau de la radula; bu, ganglions buccaux; OE, œsophage; G, estomac; I, intestin. Gross. 4.
Fig. 31. Radula toute déployée. Gross. 6.
Fig. 32. Fragment de la radula : deux rangées consécutives de dents. Gross. 150.
Fig. 33. Dents latérales : a, une de ces dents prise près de la dent médiane; b, dent latérale plus éloignée de la ligne médiane que du bord externe; c, dernière dent d'une rangée. Gross. 400.
ig. 34. Un fragment des parois internes de l'estomac pour montrer les pièces chitineuses qui constituent son armure. Gross. 60.
Fig. 35. Collier œsophagien : C, ganglions cérébroïdes; P, ganglions pédiéux. (Voy. le texte pour l'explication des nerfs.) Gross. 25.
Je n’aurais jamais songé à entreprendre cette histoire malacologique, si je n’avais pas fait la promesse au savant voyageur, M. Achille Raffray, de déterminer ses espèces abyssiniennes, et si je n’avais pas reconnu parmi elles un assez grand nombre de formes inédites.

Ce sont ces formes nouvelles que je vais faire connaître dans la première partie de ce mémoire; dans la seconde, je donnerai un synopsis de toutes les coquilles connues de l’Abyssinie; je terminerai, enfin, par une étude malaco-stratigraphique des espèces de cette région, et par un aperçu sur la répartition des Mollusques à la surface du continent africain.

I

M. Achille Raffray, vice-consul à Massaouah, fut chargé, dans le cours de l’année 1881, d’une mission près du roi Johannès.

Le roi d’Abyssinie, à l’inverse des monarques d’Europe, ne réside pas dans un palais; il a, au contraire, l’habitude de vivre constamment au grand air, au milieu de son armée,
qu'il conduit tantôt contre un vassal révolté, tantôt, et le plus souvent, contre les tribus de Gallas indépendantes, qu'il désire soumettre à son autorité. A l'époque où M. Raffray voulut accomplir la mission qui lui était confiée, ce monarque était campé au sud-est de son royaume, sur une des montagnes de la chaine du Zeboul. C'est à cette circonstance heureuse que le vice-consul dut, pour se rendre près du roi, de pouvoir parcourir une grande partie de l'Abyssinie, de visiter les Gallas Raïas et les monts Zeboul, régions jusqu'ici inconnues, où nul Européen n'avait pu mettre les pieds. Ce fut, pendant ce voyage, que M. Raffray, qui, comme on le sait, compte parmi les plus savants et les plus zélés entomologistes, se fit un plaisir de recueillir, avec les Insectes, tous les Mollusques qu'il put rencontrer.

Je vais maintenant, pour l'intelligence de la partie descriptive, afin de bien faire connaître la position des localités où ces animaux ont été rencontrés, suivre pas à pas le vice-consul dans son itinéraire. Le récit que je vais faire, je dois plutôt dire, que je vais emprunter presque en entier à l'intéressante relation publiée par ce voyageur, est nécessaire, parce qu'il fera comprendre, par la description du sol et de ses reliefs, les milieux dans lesquels ont vécu ces êtres; il pourra, de plus, jeter une lumière sur les influences que le mode de vie et d'habitat a pu avoir sur l'organisme de ces Mollusques.

Accompagné de deux anciens officiers de l'armée française, MM. Herbin et Simon, M. A. Raffray, de Massaouah gagna Keren, dans le pays des Bogos, par ce chemin bien connu et si souvent décrit, chemin que suivirent toutes les missions allemandes et italiennes.

De Keren, par les plateaux de l'Hamacen et du Saraoué, le vice-consul atteignit Adowa, la principale ville du Tigré.

Abandonnant alors, à partir d'Adowa, la route ordinaire des caravanes, M. Raffray et ses compagnons, après avoir franchi les montagnes du Géralta, traversé la vallée de l'Oueri, le col
(2413 mètres) de l'Addi Andaï, arrivèrent enfin sur les plateaux de l'Anderta.

J'emprunte maintenant à M. Raffray la suite de son itinéraire.

Les plateaux de l'Anderta sont absolument semblables à ceux du Hamacen ; comme dans ces derniers, il n'y a pas d'arbres ; on n'y voit que des prairies très épaisses, que des pâturages très abondants qui alimentent de nombreux troupeaux ; partout il y a de l'eau en grande quantité.

Les plateaux de l'Anderta sont absolument semblables à ceux du Hamacen ; comme dans ces derniers, il n'y a pas d'arbres ; on n'y voit que des prairies très épaisses, que des pâturages très abondants qui alimentent de nombreux troupeaux ; partout il y a de l'eau en grande quantité.

Les plaines de l'Anderta sont limitées au sud par un massif montagneux considérable, le massif de Damot-Konen. L'armée anglaise, dans son expédition contre Théodoros, suivit le même itinéraire. Elle entra, comme nous, dans la vallée du Mesghi, affluent du Tallaré, et vint au pied du mont Aladjié, qui est un des sommets les plus importants de l'Abyssinie ; le col, que nous avons franchi, était à 3007 mètres d'altitude.

Il y a, dans cette région, trois vallées successives de peu d'importance, mais qui ont une configuration assez particulière ; la ligne de partage des eaux, entre le bassin du Nil et celui de la mer Rouge, est située à une très petite distance à l'est.

Ces vallées sont séparées les unes des autres par des chaînes de montagnes peu importantes, mais qui, à une certaine distance de la source, se renflent pour former des sommets beaucoup plus élevés qu'à la source même, et entre lesquels les vallées se trouvent réduites à de simples failles pour l'écoulement des eaux.

Les points culminants de ces renflements sont : au nord, le mont Aladjié ; au sud, le mont Debbar ; enfin, au milieu, le mont Addéda ; le col du mont Debbar est à 3252 mètres d'altitude.

A partir du mont Debbar, on quitte le bassin du Nil pour entrer dans une région tout à fait nouvelle et entièrement différente des autres parties de l'Abyssinie : à l'exception de certaines vallées, où croît une riche végétation arborescente,
l'Abyssinie est en général dénudée, tandis que le bassin de la mer Rouge, ou plutôt le bassin du lac Aoussa, présente une végétation arborescente très vigoureuse, mais d'une nature toute particulière, et qu'on ne s'attend pas à trouver sous cette latitude. Ce sont surtout des arbres résineux ressemblant au Genévrier et au Thuya, mais avec les proportions du Cèdre; quelques-uns atteignent jusqu'à 25 et 30 mètres de hauteur. Les Abyssins l'appellent Tsédi; ils forment des forêts très belles, très épaisses, de sorte qu'on se trouve transporté brusquement dans une région qui ne ressemble en rien au reste de l'Abyssinie.

Il y a, sur le versant sud du mont Debbar, un premier plateau, lorsqu'on a passé le col, où les cours d'eau sont tellement entremêlés qu'il est difficile tout d'abord de distinguer de quel côté ils se dirigent; les uns vont vers le Taccazé, les autres vers le lac Aoussa, et immédiatement on rencontre les forêts de Tsédi, puis on descend, et l'on se trouve dans la plaine de Méhana; de là on entre dans des vallées très abruptes, très accidentées, de plus en plus boisées, qui conduisent à des relèvements de montagnes d'où l'on aperçoit le lac Aschanghi.

Le lac Aschanghi, qui est certainement l'un des sites les plus pittoresques de l'Abyssinie, en est aussi l'un des points les plus curieux.

Ce lac forme, à lui seul, une cuvette indépendante de tous les bassins, quoiqu'il soit compris dans celui de la mer Rouge; il est entouré, à l'ouest et au nord, de montagnes assez élevées, à l'est et au sud, de petites collines de peu d'importance; aucune rivière ne sort de ce lac dont les eaux sont constamment au même niveau; il ne reçoit que de petits torrents qui descendent des montagnes avoisinantes, et n'a d'autres communications que des communications souterraines.

Après ce lac, le plateau continue pendant un certain temps, et l'on trouve un second lac à une très petite distance, c'est le Metchiao Bahri, qui ressemble à un tout petit étang; il est dans ARTICLE N° 2.
les mêmes conditions que le lac Aschanghi; à peu de distance de là, se trouve une faille considérable par laquelle on descend du massif éthiopien. Des vallées très étroites et des gorges abruptes conduisent du lac Aschanghi, qui est à 2516 mètres d'altitude, aux plaines des Gallas Raïas situées à une altitude de 1450 mètres.

» Les plaines des Gallas Raïas ressemblent à toutes les plaines basses de l'Abyssinie; le sol est un peu sablonneux et couvert d'une végétation assez rare, rabougrie et presque entièrement composée de Mimosas; mais on y voit très peu de Baobabs qui ordinairement, partout en Abyssinie, sont assez abondants à altitude égale.

» A l'est de ces plaines, se dresse une petite chaîne de montagnes appelée le Zeboul, parallèle au massif éthiopien; elle n'en est pas absolument indépendante, car elle est reliée, au nord, par les montagnes des Azebo Gallas, et, au sud, par des contreforts qui descendent des plateaux du Ouadela. C'était là que le roi était venu établir son camp avec son armée; c'était là aussi que je devais aller le trouver.

» Les montagnes du Zeboul sont entièrement couvertes de forêts de Tsédi; partout des arbres magnifiques couverts de lianes, dont les branches laissent pendre des mousses, des Orchydées épiphytes tamisant les rayons de soleil et entretenant partout cette atmosphère tiède et humide dans laquelle se développe la luxuriante végétation des tropiques.

Une fois sa mission remplie, lorsque le vice-consul Raffray quitta, après cinq semaines, le mont Zeboul, il dirigea ses pas sur le gigantesque massif de l'Abboï-Miéda. Je continue mes citations.

« Je montai pendant plusieurs jours, car il fallait arriver au sommet d'un des massifs montagneux les plus élevés de l'Abyssinie, le mont Abboï-Miéda. Ce mont est certainement l'un des points orographiques les plus importants de la contrée. Le pied du piton de cette montagne (il est impossible de faire l'ascen-
sion du piton même, qui n’est qu’un rocher à parois absolument verticales) se trouve à 3474 mètres d’altitude, et donne naissance à trois rivières qui sortent en quelque sorte d’un seul rocher : la Goulima, à l’est, qui se dirige vers la plaine des Adals et le bassin du lac Aoussa, le Taccazé au sud, et enfin le Tellaré au nord.

» L’Abboï-Miéda est le point extrême, vers l’est, d’une sorte de crête sinueuse, coupée de cols et de massifs rocheux qui va de l’est à l’ouest, en inclinant légèrement au nord. Le point extrême à l’ouest est le mont Abouna Yousef.

» A mesure que je gravissais les pentes de l’Abboï-Miéda, la température devenait de plus en plus froide; la végétation était plus rare aussi, et les arbres se couvraient de mousses et de lichens. Enfin, vers le sommet, c’est-à-dire vers le pied du piton, la végétation avait presque complètement disparu; elle n’était plus représentée que par de grandes bruyères arborescentes dont les troncs étaient fort noueux et très moussus. C’est le dernier arbre que l’on rencontre.

» Pendant cinq jours je parcourus cette crête du pied du piton, du sommet pour ainsi dire de l’Abboï-Miéda au sommet de l’Abouna-Yousef, montant tantôt sur la crête, tantôt descendant un peu dans la vallée, franchissant à chaque instant des ruisseaux, car aucun pays n’est aussi humide, aussi largement pourvu de sources que cette région.

» Lorsqu’on arrive sur la crête, à peu près à 3500 ou 3600 mètres d’altitude, toute végétation arborescente a disparu; on ne voit plus qu’une plante extrêmement remarquable d’ailleurs. Cette plante, car ce n’est point un arbre malgré ses dimensions (1), puisqu’elle meurt après chaque floraison, est tout à fait particulière aux hauts sommets de l’Abyssinie. C’est le Rhynchopetalum montanum des botanistes, ou Djibera des Abyssins.

» Les plateaux, car il y en a en certains endroits sur

(1) Cette plante annuelle atteint jusqu’à 8 mètres de hauteur.

ARTICLE N° 2.
cette crête, sont très souvent marécageux et affectent même l'aspect de marais tourbeux.

» Deux pitons forment le sommet de l'Abouna-Yousef ; ils ne sont guère élevés que de 2 à 300 mètres au-dessus du col et ont très peu d'importance. Un de ces pitons a une forme ronde ; l'autre, celui qui est plus au nord, une forme tout à fait fantastique de roches brisées et entassées les unes sur les autres.

» La descente de l'Abouna-Yousef est loin d'être facile, on descend dans une sorte de cirque formé par des roches qui m'ont paru être des roches basaltiques ; elles en ont au moins la forme prismatique, sauf qu'elles sont de couleur rouge. Au pied, se trouve une vallée affluente du Taccazé, c'est la vallée du Semiéno, par laquelle j'arrivai à Lalibéla.

» Après Lalibéla, je continuai ma route vers le nord pour regagner les plateaux du Ouagh et de Sokota. Je rentrai là dans une région extrêmement montagneuse, très tourmentée, dont les eaux se jettent dans le Taccazé par des vallées secondaires, dont la principale est la vallée du Méri.

» Cette partie du voyage m'était d'autant plus difficile que je ne pouvais juger du pays que je traversais. J'étais littéralement enfoui dans des vallées très profondes, très encaissées, et je ne passais qu'à travers des roches très étroites où je n'avais jamais d'horizon devant moi.

» Enfin, j'arrivai par la vallée de la Zira, où coule la rivière du même nom qui descend du mont Gourbache ; puis, traversant le col (2785 mètres d'alt.) qui sépare le mont Gourbache du mont Biala, je quittai le bassin du Taccazé pour entrer dans celui du Tellaré et me rendre à Sokota.

» De Sokota, je continuai ma route à travers les plateaux du Ouagh.

» Les plateaux de Sokota et du Ouagh se terminent brusquement par des pentes rapides, pour descendre dans la vallée du Tellaré.

» Sokota est à 2253 mètres d'altitude, et la vallée du Tellaré à 1215. A mesure que je descendais, la température s'éle-
vait considérablement, et tandis qu'à Sokota je n'avais que 15 degrés de chaleur, au Tellaré j'en avait 39.

» Du Tellaré, je me rendis à Saka, et traversai un peu plus loin la Zamrah. A partir de cette rivière, j'inclinai vers l'est pour revenir sur le plateau de l'Anderta, où j'avais rendez-vous une seconde fois avec le roi.

» A Mékélé, je trouvais le roi Johannès, qui, pour des motifs particuliers, avait changé son camp et s'était rapproché un peu du littoral.

» Quelques jours après, je repris ma route de Massaouah, et, suivant pas à pas celle qu'avaient tracée les Anglais lors de leur expédition contre Théodoros, j'arrivais à Halaie. Je n'étais plus qu'à 48 kilomètres de marche de Massaouah, où je rentrais après six mois de voyage. »
GASTEROPoda INOPERcULATA.

§ 1.—PULMONACEA.

HELIXARIONIDÆ.

HELIXARION.

Cette coupe générique, établie par Ferussac (Prod., p. 19 et 20, 1821) pour deux espèces vitrinoïdes de la Nouvelle-Hollande : les Cuvieri et Freycineti, est un genre du centre indien dont les formes spécifiques ont été constatées non seulement dans toutes les régions de l’Asie méridionale, mais encore dans la plupart des îles océaniennes et même jusque sur le continent africain.

Les Helixarion sont des animaux caractérisés par un pied nettement tronqué à son extrémité, avec un pore muqueux, en forme de boutonnière, occupant toute la troncature, et possédant une coquille si semblable à celle des Vitrines, que, sans l’animal, il est presque impossible de les en distinguer.

On doit à notre ami, le professeur Arturo Issel, la découverte, dans le pays des Bogos, des deux premières espèces africaines, les :

Helixarion lymphaeus, Morelet, in Ann. mus. civ. di Genova, III, 1872, p. 189, pl. IV, f. 4;

Et Helixarion pallens, Morelet (loc. sup. cit.), p. 190, pl. IX, f. 5.

M. A. Raffray a été assez heureux pour recueillir une espèce différente à test plus globuleux, et à dernier tour moins largement dilaté vers l’ouverture.

Helixarion Raffrayi (fig. 12-14).

Testa imperforata, semiglobosa, superne depressa, inferne bene convexa, hyalina, pertenui, nitida, pallide corneo-lutecente, laevigata in ultimo subtiliter striatula; — spira brevi,
J.-R. BOURGUIGNAT.

depressa, paululum convexa; — apice valido sicut submamil-lato; — anfractibus 3 velociter crescentibus, sutura marginata separatis; — ultimo maximo, subrotundato, supra convexo, subitus rotundato; — apertura obliqua, ampla, fere semi-sphaerica; — peristomate simplici, peracuto; — margine supero anfrorsum vix arcuato; — margine columnellari rectiusculo, superne breviter reflexo; — alt. 7, diam. 9 millim.

Cet Helixarion vit sous les détritus, dans les anfractuosités du mont Zeboul, chez les Gallas Raïas.

L'animal paraît jaunâtre; son manteau est d'un ton plus clair; le pore muqueux, bien ouvert, affecte la forme triangulaire.

Cette espèce semiglobuleuse ne peut être confondue ni avec le pallens, ni avec le lymphaseus, comme on peut s'en convaincre par la comparaison des figures. Ces coquilles, en effet, sont des formes oblongues dans le sens transversal, peu globuleuses, plutôt déprimées, et dont le dernier tour est très dilaté vers l'ouverture.

THAPSIA.

C'est au détriment des Nanina que ce genre a été créé par Albers, en 1860 (2e édit. des Heliceen, p. 56), pour des espèces ARTICLE N° 2.
nainoïdes spéciales à l'Afrique et aux îles voisines de ce continent (1).

Les Thapsies sont des formes orbiculaires, déprimées, plus ou moins étroitement perforées, caractérisées par un test brillant, très délicat, ordinairement très finement décussé, à tours généralement serrés par suite d'une croissance lente, à ouverture subarrondie ou échancrée-subangulaire ; enfin, à péristome tranchant, dont le bord columellaire est réfléchi seulement à la partie supérieure.

Cette coupe générique a été adoptée par Dohrn, en 1875 (2), et par Clessin, en 1878 (3).

Les principales espèces de ce genre, sont :

- *cerea* (Helix), Gould, Liberia.
- *thomensis* (Nanina), Dohrn, île Saint-Thomas.
- *chrysosticta* (Helix), Morelet, id.
- *liberix* (Helix), Brown, Liberia.
- *aglypta* (Nanina), Dohrn, îles des Princes.
- *egenula* (Helix), Morelet, Sénégal.
- *columellaris* (Helix), Pfeiffer, Sénégal.
- *glomus* (Nanina), Albers, Liberia.
- *pellucida* (Helix), Gould, Afrique.
- *trogloodytes* (Helix), Morelet, Gabon, Guinée.
- *calamechroa* (Helix), Jonas, Guinée.

Et, enfin, les Abyssinica, *Vesti* et *oleosa* que Jickeli (Moll. N. O. Afrik, 1874, p. 50-52) a classées à tort, à mon sens, parmi les *Microcystis* de Beck, espèces océaniennes spéciales aux îles Philippines, Taiti, Sandwich et autres.

Voici la synonymie et les localités de ces trois Thapsies, les seules connues jusqu'à présent en Abyssinie :

1° *Thapsia abyssinica*. — *Hyalina abyssinica*, Jickeli, in

(1) On en a constaté quelques espèces à Madagascar et même à l'île Maurice.
(2) In Malak. Blätter, p. 205.
(3) Nomencl. Helic. viv., p. 56.
J.-R. BOURGUIGNAT.

De ces trois espèces, M. A. Raffray a recueilli la :

THAPSIA ABYSSINICA,

dans le pays des Bogos, à une altitude de 1300 mètres; de plus, il a été assez heureux pour en découvrir une autre nouvelle dans les détritus du mont Zeboul, chez les Gallas Raïas (1994 mètres). Cette nouvelle espèce est la :

THAPSIA EURIOMPHA (fig. 17-20).

Testa exigua, umbilicata, depressa, supra convexa, subitus leviter convixiore, nitida, pellucida, tenui, uniformiter cornea, levigata sed sub validissimo lente subtilissime striatula; — spira convexo-depressa; — anfractibus 5 1/2 convexiusculis, lente crescentibus, sutura parum impressa ac submarginata separatis; — ultimo ovato-subrotundato; — apertura parum obliqua, lunata, semiovato-rotundata; — peristomate recto, acuto; — margine columellari superne validiore, intus albicante ac leviter dilatato; — alt. 3, diam. 6 millim.

Coquille petite, bien ombiliquée, de forme déprimée, légèr-
ment convexe en dessus, un peu plus renflée en dessous. Test mince, brillant, transparent, d'une teinte cornée uniforme, lisse à l'œil nu, mais paraissant, sous le foyer d'une très forte loupe, très finement striolé. Spire convexe, déprimée. Cinq tours et demi faiblement convexes, à croissance lente, séparés par une suture peu profonde et submarginée. Dernier tour ovale-subarrondi. Ouverture légèrement oblique, échancrée, semiovalaire-arrondie, entourée d'un péristome droit et tramchant. Bord columellaire paraissant à sa partie supérieure un peu plus robuste, d'une nuance blanchâtre, et légèrement dilaté.

Cette nouvelle espèce se distingue facilement :

1° De l'Abyssinica, par sa coloration cornée et non fauve rougâtre; par son test non décussé, mais simplement striolé; enfin, par son large ombilic (l'Abyssinica ne possède qu'une très étroite perforation);

2° De la Vesti, également par son grand ombilic, et en outre, par ses tours plus nombreux (la Vesti n'en a que 4); par son test un peu moins convexe; par sa spire plus déprimée et non convexe-subconoïde; par son ouverture moins échancrée;

3° De l'oleosa, par sa coquille plus déprimée (celle de l'oleosa est sensiblement plus globuleuse); par son ouverture plus échancrée, d'une forme moins ronde, mais plus ovalaire dans le sens transversal; par ses tours plus nombreux; surtout par son ombilic bien ouvert, tandis que, chez l'oleosa, la perforation se trouve réduite à une toute petite fente presque nulle.

En somme, l'euriomphala, comme son nom l'indique, est l'espèce la plus largement ombiliquée.

SITALA.

L'espèce que je signale sous ce nom générique ressemble tellement, par sa coquille, aux petits Zonites (ou Hyalinia), de la série des Conulus d'Europe, que, sans la présence d'un pore muqueux terminal, je n'aurais pas hésité à la classer parmi
J.-R. BOURGUIGNAT.

eus. Mais ce pore muqueux écarte tout à fait ce Mollusque des Helicidae, et motive sa place parmi les Helixarionidae.

On a constaté, en Afrique, dans toute la région de Mozambique, du lac Nyassa, et même dans les contrées du haut Nil, ainsi qu'à Bongo, au sud de l'Abysсинie, une espèce assez voisine de celle-ci, l'Helix mozambicensis, à laquelle on a attribué tantôt le nom générique de Trochomorpha (1), tantôt ceux de Trochonanina (2) ou de Martensia (3). Cette coquille ne peut être assimilée à l'espèce Sitalienne découverte par M. A. Raffray, parce que, comme toutes celles que l'on a rangées dans la coupe des Trochomorpha, elle possède un dernier tour fortement caréné.

Les Sitalas, au contraire, sont de petites espèces, entièrement semblables à celles de la série des Conulus d'Europe, à test lisse, quelquefois striolé, brillant, transparent, plus ou moins conique. Le savant malacologiste, Godwin-austen, dans ses Land and freshwater mollusca of India, vient de donner la représentation (pl. VIII - X) d'un grand nombre de Sitala. Parmi elles, celles qui me paraissent se rapprocher le plus de celle de l'Abyssinie, sont les Sitala rimirica, attegia et infula de l'Indoustan.

SITALA RAFFRAYI (fig. 15-16).

Testa imperforata, conoidae, fragillima, perdiaphana, nitidissima, cornea ac omnino laevigata; — spira conica, producta; — apice pallidiore, obtuso; — anfractibus 6 convexis, regulariter lenteque crescentibus, sutura impressula separatis; — ultimo leviter majore, ad apertura non ampliore, convexo, subitus convexiore, ad insertionem labri recto; — aper-

(3) Martensia mozambicensis, Semper, Reisen im arch. d. Philipp. III, (II. I), p. 42, pl. 3, fig. 56. et, pl. 6, fig. 15, 1870; — et Jickeli, Moll. n. o. Afr., p. 49, 1874.

ARTICLE N° 2.
tura obliqua, semiovata; — peristomate recto, simplici; —
margine supero non arcuato; — margine columnellari superne
dilatato ac supra rimam obtectam adspresso; — alt. 4, diam.
æqual. 4 millim.

Coquille imperforée, conoïde, très fragile, bien brillante,
très diaphane, tout à fait lisse et d'une teinte cornée. Spire
conique assez étalée, à sommet obtus, d'un ton plus pâle.
Six tours convexes, à croissance lente et régulière, séparés par
une suture peu prononcée. Dernier tour un peu plus convexe
en dessous qu'en dessus, non dilaté vers l'ouverture et recti-
ligne non descendant à l'insertion du bord supérieur. Ouver-
ture oblique, semi-ovale, à péristome droit et tranchant. Bord
supérieur non arqué en avant. Bord columellaire dilaté à sa
partie supérieure et réfléchi sur l'emplacement de la fente qui
est complètement recouverte.

L'animal (vu dans l'alcool) paraît d'un gris jaunâtre.
Cette espèce a été trouvée sous les détritus humides au
mont Zeboul, chez les Gallas Raïas.

Je crois qu'il convient de placer dans ce genre une très
petite espèce (haut. 1 3/₄, diam. 2 mill.) découverte sous les
pierres et les détritus de la montagne de Rora-Beit-Andu
(Hamacen). Cette espèce, décrite d'abord sous l'appellation
d'Helix menbranacea (Jickeli, in Malak. Blätt, 1873, p. 102),
puis sous le nom d'Helix (acanthicula) Steudneri (Jickeli, Moll.
N. O. Afrika, p.60, pl. IV, f. 21, 1874), est une coquille imper
forée, globuleuse-conique, à test excessivement délicat, d'un
diaphane légèrement verdâtre, et très élégamment striolé par
de très fines costulations fort serrées; la spire est conoïde, à
sommet obtus; les tours, au nombre de quatre, assez convexes,
sont séparés par une suture relativement profonde; le dernier,
qui atteint les 2/5 de la hauteur, est faiblement descendant
vers l'ouverture; celle-ci, oblique, semi-arrondie, dans un sens
un peu oblong, est entourée d'un péristome droit et tranchant;
le bord columellaire, dilaté, est réfléchi; enfin, les bords
marginaux sont légèrement convergents.

ANN. SC. NAT., ZOOL., FÉVRIER 1883. XV. 5. — ART. N. 2.
J.-R. BOURGUIGNAT.

Clessin (Nomencl. Hel. viv., p. 415) a rangé cette espèce près des Helix lamellata et aculeata d'Europe, qui n'ont pas le moindre rapport avec elle. A mon sens, je le répète, cette espèce doit être une Sitala

HELICIDÆ.

VITRINA.

Les espèces de ce genre, signalées en Abyssinie, sont les suivantes :

Vitrina Hians, Ruppell, in L. Pfeiffer, in Proceed. zool. soc., 1848, p. 108, — et Monogr. Hel. viv., II, 1848, p. 503, — et Gattung Vitrina (2ème édit., Chemnitz), p. 43, pl. 1, f. 45-47, 1854. — et Jickeli, Moll. N. O. Afr., p. 36, pl. IV, f. 5, 1874. — De l’Abyssinie (sans indication de localité). — L’hians, figurée par Jickeli, est une forme un peu plus grande que celle type représentée dans la seconde édition de Chemnitz; je ferai remarquer, en outre, que la figure 5, a est fautive, en ce sens, que la coquille représentée offre une spire un peu trop surbaissée, et une ouverture pas assez déclive, ni assez arrondie à la base.

Vitrina Abyssinica, Ruppell, in L. Pfeiffer, in Proceed. **ARTICLE N° 2.**
MALACOLOGIE DE L'ABYSSINIE. 17

zool. soc., 1848, p. 108, — et Monogr., Hel. viv. II, 1848, p. 506. — Abyssinie (Ruppell) ; de Takonda (Blandford). — Coquille de petite taille (haut. 5 1/2, diam. 10 mill.), ovale-déprimée, de deux tours et demi, dont le dernier est très dilaté vers l'ouverture.

VITRINA SEMIRUGATA, Jickeli, Moll. N. O. Afr., p. 39, pl. IV, f. 8, 1874. — Province de l'Hamacen, entre Genda et Asmara (Blandford).

VITRINA CAILLAUDI, Morelet (loc. sup. cit.), p. 188, pl. IX, f. 2. — Vitrina Martensi, Jickeli, in Malak. Blätt, 1873, p. 100. — Vitrina Isseli (non Morelet), Jickeli, Moll. N. O. Afr., p. 40, pl. IV, f. 9, 1874, — et var. deveixa, Jickeli (même ouvrage), fig. 10, — et var. Caillaudi, Jickeli (idem), fig. 11. — Le type provient de Maldi, dans le pays des Mensas (Issel), — entre Genda et Asmara, dans l'Hamacen (Blandford), — environs de Mekerka.

Il existe encore deux autres formes de Vitrina signalées, l'une du bord de la route de Genda, à Asmara, l'autre des rives du lac Aschanghi, que je passerai sous silence, parce qu'elles n'ont pas été nommées. Je laisserai également de côté
J.-R. BOURGUIGNAT.

les Vitrina Senaariensis et Darnaudi qui n’ont pas été constatées d’une manière bien certaine en Abyssinie.

Les Vitrines recueillies par le vice-consul A. Raffray, sont au nombre de cinq. Ces espèces peuvent se répartir en deux séries :

1° En espèces oblongues, dans une direction transversalement oblique, et à test d’une nuance jaune plus ou moins prononcée : Milne-Edwardsiana, semirugata ;

2° En espèces de forme moins oblongue, plutôt semi-globuleuse, et à test d’une teinte cornée sombre ou d’un corné fauve : Ruppelliana, Raffrayi, et Herbini.

VITRINA MILNE-EDWARDSIANA (fig. 7-9).

Testa imperforata, sat magna, subsemigloboso-oblonga in directione oblique declivi, tenni, nitida, diaphana, uniformiter flavescente, obsolete striatula, in ultimo obscure subplicatuloradiatula ac aliquando superne passim in seriebus spiraliter submalleata ; — spira brevi, obtusa, prominent ; — apice exiguo ; — anfractibus 3 convexis, pervelociter crescentibus, sutura ad apicem subprofunda, ad ultimum marginata separatis ; — ultimo maximo, amplio, oblongo in directione oblique transverseque declivi, subtus convexo ; — apertura obliqua, declivi-oblonga ; — peristomate fragilim ; — margine supero antrorsum parum convexo ; margine columnellari arcuato, superne sat late reflexo ; marginibus subapproximatis, callo vix conspicuo junctis ; — alt. 11-12, diam. 14-15 millim.

Coquille d’assez grande taille tout à fait imperforée, oblongue-subventrue dans une direction obliquement inclinée de gauche à droite. Test d’une teinte uniforme jaunacée, transparent, très mince, brillant, élégamment striolé sur les tours supérieurs, et présentant, sur le dernier, des stries émoussées pliciformes et, parfois, à sa partie supérieure, des malléations peu sensibles en séries spirales. Spire courte, obtuse, assez proéminente, et dépassant sensiblement le haut de l’ouverture. Sommet exigu. Trois tours convexes, à croissance des plus
rapides, séparés par une suture commençant par être assez profonde à l'origine pour devenir peu à peu marginée. Dernier tour très grand, bien ample, d'une forme oblongue dans une direction obliquement déclive, convexe en dessus et en dessous, mais plus en dessous qu'en dessus. Ouverture oblique, oblongue-inclinée, entourée d'un péristome tranchant. Bord supérieur à peine arqué en avant. Bord columellaire courbe, un tant soit peu plus robuste, enfin, se dilatant à sa partie supérieure sous la forme d'une lamelle délicate appliquée sur l'emplacemment ombilical. Bords marginaux assez rapprochés, réunis par une callosité diaphane, à peine perceptible.

Parmi les nombreuses Vitrines abyssiniennes ou des contrées environnantes, la Milne-Edwardsiana ne peut être rapprochée que de la semirugata. Elle se distingue de celle-ci par sa taille plus grande ; par sa forme oblongue-subventrue dans une direction obliquement inclinée de gauche à droite (la semirugata, tout en ayant une tendance à la même inclinaison, est plus transversale ; elle est, en outre, moins ventrue et moins haute) ; par sa spire plus proéminente ; par sa suture différente (chez la semirugata, la suture est superficielle entre les tours supérieurs) ; par son ouverture moins oblongue, moins oblique et plus haute ; par son dernier tour, plus vigoureusement plissé et plus convexe en dessous.

M. Morelet (Moll., voy. Welwitsch, 1868) a décrit, de la province d'Angola, deux Vitrines, les Welwitschi et Angolensis, qui ont, notamment l'Angolensis, avec notre nouvelle espèce, un aspect à peu près semblable ; mais ces Vitrines diffèrent de la nôtre par un trop grand nombre de signes particuliers, pour qu'on puisse jamais les confondre ensemble.

La Milne-Edwardsiana, à laquelle j'attribue le nom du savant professeur, M. A. Milne-Edwards, membre de l'Institut, a été découverte dans les endroits humides (2000 à 2500 m.) des hauts plateaux de l'Hamacen, entre Keren et Adowa, notamment dans les environs de Addi-Baro.
VITRINA SEMIRUGATA.

Vitrina semirugata, Jickeli, Moll. N. O. Afr., p. 39, pl. IV, l. 8, 1874.

Cette espèce, qui a été signalée entre Genda et Asmara, a été recueillie par M. Raffray, sur le mont Zeboul (1994 m.), chez les Gallas Raias.

D'après un échantillon conservé dans l'alcool, le manteau de l'animal, d'un jaune mat, paraît moucheté de quelques points noirs ; la queue, très pointue, peu allongée, assez fortement carénée, ne possède pas de pore muqueux.

VITRINA RUPPELLIANA (fig. 10-11).

Les individus rapportés par M. A. Raffray sont exactement semblables à celui décrit et figuré par le Dr L. Pfeiffer. Ils ont été trouvés à une grande altitude (4024 m.), sur l'Abouna-Yousef, au sud-est de l'Abyssinie.

L'animal de la RupPELLiana (conservé dans l'alcool) paraît d'une teinte sombre ; le manteau est même presque noir ; la queue, fort allongée, plate, est munie d'une carène fort aiguë ; le test n'est pas d'un jaune verdâtre, comme le dit Jickeli, mais d'une teinte cornée un tant soit peu subolivâtre.

VITRINA RAFFRAYI (fig. 1-3).

Testa imperforata, subsemigloboso-ovata in directione leviter decli, pertenui, diaphana, nitidissima, kevigata, modo circa suturam in ultimo leviter obsolete subradiatula, ac fulvofumida ; — spira convexa, parum prominente ; — apice palli diore, sat valido ; — anfractibus 3 1/2 convexiusculis, rapide crescentibus, sutura impressula ac in ultimo submarg inata separatis ; — ultimo majore, suboblongo, supra convexo ac leviter subdecli, subtus convexiore, ad aperturam parum ampliori ; — apertura perobliqua, semiovato-rotundata ; —

ARTICLE N° 2.
peristomate fragillimo ac peracuto; margine supero antrorsum leviter arcuato; margine columellari reflexo; marginibus callo pallidiore junctis; — alt. 6; diam. 9 millim.

Coquille imperforée, ovalaire-subglobuleuse dans une direction légèrement inclinée, excessivement mince, transparente, très brillante, d'une teinte fauve-enfumée, à test lisse, seulement orné de petites radiations très émoussées le long de la suture sur le dernier tour. Spire médiocrement convexe, peu saillante, à sommet relativement gros, et d'une nuance plus pâle. Trois tours et demi peu convexes, à croissance rapide, séparés par une suture peu accentuée, finissant par devenir marginée en approchant de l'ouverture. Dernier tour relativement grand, de forme un peu oblongue, peu convexe et un tant soit peu déclive en dessus, plus convexe en dessous, enfin, peu dilaté vers l'ouverture; celle-ci, très oblique, semi-ovale-subarrondie, offre, à sa partie supérieure, un contour incliné faiblement rectiligne, et, à sa base, qui est très en arrière, un contour arrondi. Bord supérieur peu arqué en avant. Bord columellaire réfléchi à son insertion. Bords marginaux réunis par une callosité excessivement mince, non perceptible, mais qui devient d'un ton plus pâle, lorsque la coquille est bien sèche.

Cette Vitrine, que je dédie à M. A. Raffray, qui en a fait la découverte, vit sur les hautes sommités (4024 m.) de l'A-bouna-Yousef. Cette espèce, remarquable par l'extrême ténuité de son enveloppe, est si mince, si transparente malgré sa coloration noire-enfumée, que l'on peut parfaitement lire à travers son test. Chez cette coquille, sans partie calcaire, les parois sont faites d'une membrane gélatineuse si délicate, en même temps si résistante et si élastique, que, sous la pression des doigts, elle peut s'aplatir momentanément sans se briser, pour reprendre ensuite, comme un caoutchouc, sa forme primitive.

L'animal (vu dans l'alcool) paraît entièrement noir, sauf le manteau qui semble d'un ton fauve-enfumé; la queue, sans
pore muqueux, terminée en pointe, est fortement carénée.

Les seules Vitrines abyssiniennes qui peuvent avoir quelques signes de ressemblance avec notre nouvelle espèce, sont les Jickelii et helicoidœa, mais, celles-ci, plus globuleuses, ont un dernier tour plus dilaté, une ouverture plus haute et plus arrondie, enfin surtout un test d’une tout autre nature.

La Raffrayi, par l’ensemble de ses contours, et par sa physionomie générale, pourrait plutôt, comme forme, rappeler notre Vitrina major, si abondante en Europe.

VITRINA HERBINI (fig. 4-6).

Testa imperforata, semi-globosa (supra depressa, subtus depressiore), pertenui, diaphana, nitente, uniformiter castaneo-fulva, lavigata vel sub validissimo lente argutissime striatula; — spira depressa, convexiuscula; — apice pallidiore; — anfractibus 3 velociter crescentibus, sutura ad summum impressula, ad ultimum marginata separatis; — ultimo majore, ovato in directione leviter declivi, supra paululum convexo, subtus rotundato; — aperture perobliqua, ovato-semirotundata, superne leviter subrecte declivi, inferne rotundata ac valde recedente; — peristomate acuto; — margin supero antrorsum vix arcuato; margin columellari superne reflexo ac supra locum umbilicalen in lamella albescente adpresso; marginibus approximatis, callo pallidiose junctis; — alt. 6-7, diam. 9-10 millim.

Coquille imperforée, déprimée en dessus, plus convexe en dessous, de forme moitié globuleuse, à test très mince, diaphane, brillant, d’un fauve marron uniforme, et, à épiderme lisse ou paraissant, sous le foyer d’une forte loupe, sillonné de très fines striations. Spire déprimée, peu convexe, à sommet d’un ton plus pâle. Trois tours, à croissance rapide, séparés par une suture faiblement accentuée vers le sommet, devenant ensuite, sur le dernier, marginée. Dernier tour plus grand, ovale-subarrondi, à peine convexe en dessus, arrondi en dessous. Ouverture très oblique, ovale-semi-sphérique,

Cette Vitrine, à laquelle j'attribue le nom d'un des compagnons de M. A. Raffray, a été recueillie à des altitudes variant de 2000 à 2500 mètres, sur les hauts plateaux de l'Hamacen et de Saraoué, entre Addi-Boro et Addi-Hollala.

L'Herbini se distingue de l'helicoidea par sa forme un peu moins globuleuse ; par sa coloration d'un fauve-marron foncé (celle de l'helicoidea est jaune-claire) ; par sa partie ombilicale sans la moindre trace de perforation (celle de l'helicoidea, d'après Jickeli, est « subrimata ») ; par son tour embryonnaire non « submamillari » ; par son dernier tour non plan en dessus, mais faiblement convexe ; par le bord de la base de son ouverture simple, non accompagné d'une membrane très étroite (« margine basali membranacea angustissima vestito », Jickeli) ; enfin, par son bord columellaire réfléchi à sa partie supérieure en une membrane courte, tout à fait appliquée sur l'emplacement ombilical, et n'offrant pas une réflexion patulecente, allongée et libre de façon à donner naissance à une rimule (« columellari ad insertionem reflexo et rimam formante », Jickeli).

SUCCINEA.

On trouve dans les auteurs huit espèces de Succinées signalées en Abyssinie, savoir : trois spéciales : rugulosa, limicolata et Adowensis, et cinq autres (badia, debilis, Pfeifferi, putris et striata), assimilées, sous ces dénominations, à des formes étrangères.

Or, lorsqu'on examine avec soin ces formes, on reconnaît :

1° Que l'espèce abyssinienne, rapportée à la badia (1), du

J.-R. BOURGUIGNAT.

royaume d’Angola, doit être considérée comme une rugulosa; 2° Qu’une de celles de Jickeli, nommée striata (1), pourrait bien n’être autre chose qu’une Adowensis; 3° Enfin, que les debilis, Pfeifferi et putris sont des formes mal déterminées, qu’il convient, jusqu’à nouvel ordre, de laisser de côté.

En somme, les seules Succinées abyssiniennes bien définies sont les rugulosa, limicola et Adowensis. A ces espèces j’ai à ajouter deux nouvelles, Poirieriana et ethiopica, qui ont été découvertes par M. A. Raffray.

SUCGINEA RUGULOSA (fig. 53-54).

Succinea rugulosa, Morelet, in Ann. mus. civ. Genova, III, 1872, p. 192, pl. IX, fig. 7 (médiocre); — et Jickeli, Moll. N. O. Afr., 1874, p. 168, pl. VI, fig. 12 (médiocre).

La rugulosa est une espèce commune sur les hauts plateaux de l’Hamacen; elle présente quelques variations dans sa taille et dans ses costulations. Elle varie de 8 à 13 millimètres pour la hauteur, et de 4 1/2 à 6 1/2 pour le diamètre. Le type, qui provient de Keren, chez les Bogos, a 10 de haut sur 5 de large. Le mode de striations est également variable: ordinairement, ces striations, sur les deux derniers tours, inégalement distantes, sont grossières et plus ou moins saillantes; d’autres fois, ces striations se présentent en creuse, comme celles de certains Acmés, et se trouvent très régulièrement disposées et séparées par un intervalle plan. Si cette disposition des stries venait coïncider avec d’autres signes différents, les coquilles, qui portent un semblable mode de striations, méritaient d’être distinguées sous un nom spécial; malheureusement, comme elles n’en offrent aucun autre, elles ne peuvent être considérées que comme des variétés de la rugulosa.

Cette Succinée n’appartient point au groupe de l’oblonga d’Europe, mais à une série d’espèces particulières au conti-

(1) Non, Krauss, Sudaf. Moll., p. 73, pl. IV, fig. 16, 1818.

ARTICLE NO 2.
Testa oblongo-elongata, leviter subcontorta, parum tenui, subdiaphana, parum nitente, luteo-succinea, in supremis argute striatula, in ultimo grosse striata ac rugosa; — spira contorto-obtusa, sat producta, ad summum obtusa (anfractus embryonalis minutissimus); — anfractibus 3-4 tumidis, convexis, rapide crescentibus, sutura profunda valde descendente, separatis; — ultimo relative mediocris, tumido, subrotundo-oblongo, fere dimidiam aequante, superne valde descendente; — apertura obliqua, oblonga, relative parum ampla; — peristomate recto, acuto; — marginem columellam validiore, arcuato; — marginibus callo junctis; — alt. 10-11, diam. 5-5 1/2; alt. ap. 5 mill.

Cette espèce remarquable par le gonflement de ses tours, par son ouverture exiguë, vit également sur les hauts plateaux de l'Hamacen, notamment aux environs d'Abrechobo.

La Poirieriana, à laquelle j'attribue le nom du savant ana-
tomiste, M. Justin Poirier, du Muséum, se distingue de la *rugulosa*, par ses tours un peu plus tors, très gonflés, surtout l'avant-dernier; par sa croissance plus rapide; par sa suture plus descendante, plus profonde, notamment vers l'ouverture; par son dernier tour moins allongé, plus exigu, ne dépassant point, comme celui de la *rugulosa*, la moitié de la hauteur; par son ouverture moins haute, moins dilatée, un peu plus arrondie et plus oblique.

SUCCINEA ADOWENSIS (fig. 57-58).

Succinea striata (pars), Jickeli, Moll. N. O. Afr., 1874, p. 172, pl. VI, fig. 4 (médiocre), (non Krauss).

Je rapporte à l'*Adowensis*, la *striata* de Jickeli. Quant à cette Succinée, signalée également, sous le même nom, par le Dr Martens (Mal. Blätt, 1866, p. 97), et qui ressemble passablement à l'*egyptiaca* d'Ehrenberg, je crois que cette espèce est une forme spéciale, distincte de l'*Adowensis*, de la vraie *egyptiaca*, et de la *striata* du sud de l'Afrique.

L'*Adowensis*, remarquable par son test d'une belle teinte jaune-verdâtre; par sa forme écortée, globulense-ventrue; par ses tours bien renflés, fortement tors; par son dernier tour très costulé et comme rugueux, appartient, à mon sens, au même groupe de la *Raymondi* et des deux précédentes. Cette Succinée est très distincte de la *striata* de Natal, comme on peut s'en convaincre en examinant avec attention la représentation qu'à donnée Krauss (Sudaf. Moll., pl. IV, fig. 16), de la *striata*, d'avec celle que je donne de l'*Adowensis*, dans les planches qui accompagnent ce Mémoire.

Cette espèce vit sur les haut plateaux de l'Hamacen et du Tigré, notamment aux environs d'Adowa.

ARTICLE N° 2.
MALACOLOGIE DE L'ABYSSINIE.

SUCCEINE ÀTHIOPICA (fig. 47-48).

Testa tumida, ovata vel potius suboblongo-ovata, nitida, subdiaphana, succinea, argute striatula, in ultimo grosse striata; — spira parum producta, sat brevi, obtusa, ad summum acutiuscula; — apice minuto; — anfractibus 3 1/2-4 (quorum suprerni exigui convexique, penultimus et ultimus tumidi ac relative maximi), sutura profunda separatis; — ultimo magno, oblongo-tumido, dimidiam altitudinis superante; — apertura leviter obliqua, suboblongo-ovata; — peristomate recto, acuto; columella parum arcuata; — marginibus callo junctis; — alt. 8-9, diam. 5 1/2-6; alt. ap. 5 1/2 millim.

Coquille renflée, d'une apparence légèrement obèse-écourtée et d'une forme ovale un peu oblongue. Test brillant, assez transparent, succiné, finement strié, sauf sur le dernier tour où les stries deviennent grossières et plus fortes. Spire assez courte, obtuse, terminée par un sommet petit et assez aigu. Trois tours et demi à quatre tours non tors, à croissance rapide; les deux supérieurs sont convexes et fort exigus; les deux inférieurs, au contraire, relativement très grands, sont renflés et très convexes. Suture profonde. Dernier tour dépassant la moitié de la hauteur. Ouverture faiblement oblique, d'une forme ovale un peu oblongue, entourée par un péristome simple et droit. Columelle peu arquée. Bords marginaux réunis par une callosité descendant jusqu'à moitié du bord columellaire.

L'æthiopica a été recueillie dans les prairies des hauts plateaux de l'Hamacen.

Cette espèce, très distincte des précédentes par sa forme écourtée-renflée, non torse, par ses derniers tours très gonflés, d'une très grande taille comparée à celle des supérieurs, qui est fort exigüe, rappelle un peu l'acrambleia d'Europe, espèce du groupe de la Charpentieri. Cette Succinée est également différente de la limicola du pays des Bogos, coquille à test agglutinatif, comme celui de l'arenaria.
Les espèces de ce genre, en exceptant un échantillon jeune recueilli par Rupell sur le littoral abyssinien, et assimilé par le Dr Martens (1) à la similaris (2), sont au nombre de dix-huit.

Ces dix-huit Hélices appartiennent à huit groupes différents. Sur ces huit groupes, quatre (gr. des ciliata, rupestris, pygmea et aculeata) sont franchement européens ; un (gr. de la nivellina) me semble spécial aux contrées oriento-méditerranéennes ; les autres (gr. des pilifera, Isseli et Darnaudi), aux régions abyssiniennes.

Voici ces groupes et les espèces que je comprends dans chacun d'eux :

1o Groupe des pilifera.

Helix pilifera, Martens et Morelet.

Helix Combesiana, Bourguignat (Helix pilifera de Jickeli, non Martens, nec Morelet).

Helix Ferretiana, Bourguignat.

Helix Herbini, Bourguignat.

Helix Galinieriana, Bourguignat.

Ces cinq Hélices paraissent des formes particulières à l’Abyssinie, formes qui doivent, néanmoins, être classées dans la méthode près des villosa d’Europe ; quelques-unes même (pilifera, Combesiana et Ferretiana) rappellent la phorochœtie de la Grande-Chartreuse.

2o Groupe de la ciliata.

Helix Beccarii, Jickeli (Helix ciliata de Morelet).

ARTICLE N° 2.
3° GROUPE DE LA RUPESTRIS.
Helix Abbadiana, Bourguignat (Helix cryophila de Morelet et Helix Broechii de Jickeli).
Helix Brucei, Jickeli.

4° GROUPE DE LA PYGMEAE.
Helix cryophila, Martens.
Helix abyssinica, Jickeli Helix rivularis de Martens.

5° GROUPE DE L'ACULEATA.
Helix Raffrayi, Bourguignat.

6° GROUPE DE L'ISSELI.
Helix Isseli, Morelet (Helix Darnaudi pars de Jickeli).
Helix Lejeaniana, Bourguignat.
Helix Achilli, Bourguignat.

7° GROUPE DE LA DARNAUDI.
Helix Darnaudi, Pfeiffer (non Jickeli).
Helix Heuglini, Martens.

8° GROUPE DE LA NIVELLINA.
Helix Hamacenica, Raffray.
Helix subnivellina, Bourguignat.

Sur ces dix-huit espèces, que je viens d'énumérer, M. A. Raffray en a rapporté neuf, sur lesquelles huit nouvelles.

Pour bien faire comprendre les caractères de ces huit espèces, je rappellerai, lorsque je le croirai nécessaire, ceux des formes voisines qui n'ont pas été trouvées par M. A. Raffray.

HELIX PILIFERA.

La pilifera de Martens est une coquille (haut. 7, diam. 14 1/2 mill.) ombiliquée, déprimée, subanguleuse, sillonnée de stries pliciformes, et recouverte de poils courts, assez distants les uns des autres. Les tours, au nombre de cinq, un peu
plans en dessus, convexes en dessous, sont cercles d’une carène, assez anguleuse chez les tours supérieurs, finissant ensuite par s’émousser peu à peu, et par disparaître vers l’ouverture. Le dernier tour, subarrondi, est légèrement descendant vers l’insertion. L’ouverture oblique, presque circulaire, peu échancrée, est entourée par un péristome simple, faiblement obtus, droit à la partie supérieure, et un tant soit peu patulecent à la base aperturale. Le bord columellaire, dilaté supérieurement, est réfléchi sous la forme d’une dilatation triangulaire. Les bords marginaux sont rapprochés.

L’échantillon figuré par M. Morelet diffère du type par sa partie supérieure un peu convexe, au lieu d’être plane, et par ses tours moins subanguleux.

La *pilifera*, rapportée d’Abyssinie (sans indication de localité) par Ruppell, a été retrouvée par notre ami le professeur Issel dans le pays des Mensas, entre Maldi et Gaba.

HELIX COMBESIANA (fig. 29).

Helix pilifera, Jickeli, *Moll. N. O. Afr.*, 1874, p. 61, pl. IV, fig. 22-23 (non, Martens, nec Morelet).

Cette Hélice, à laquelle j’attribue le nom du voyageur Combes, le compagnon de Tamisier, est celle que Jickeli a considérée comme semblable à la *pilifera* de Martens.

La *pilifera* de Jickeli est une coquille à stries pliciformes très prononcées, entre lesquelles se dressent des poils allongés, distants les uns des autres, « pilis longioribus inter se distantibus sparsa ». Ces poils paraissent sortir d’un alvéole tuberculeux. Le test, d’un brun pâle, est *ceint d’une ligne isabelle*, « *ad peripheriam linea isabellina picta* », qui n’existe pas chez la vraie *pilifera*, qui, de plus, est d’une teinte marron uniforme. Le bord supérieur de l’ouverture paraît, en outre, rectiligne-incliné, ce qui rend l’ouverture moins exactement circulaire.

Cette forme est signalée de la montagne de Rora-beit-andu, dans l’Hamacén.
Testa anguste perforata, supra valde depressa vix convexa, subitus perconvexa, tenui, diaphana, sat nitente, elegantem oblique striatula, uniformiter cornea, cum zonula albescente aut passim translucida, et aliquando, in aliquibus specimini-bus, zonulis 2 vel 3 angustis albidulis et passim interruptis, subitus ornata; — spira vix convexa; — apice laevigato, nitido; — anfractibus 5 angulatis (angulus suturem sens, in prioribus acutus, ad ultimum paulatim obsoles-cens ac prope apertura evanescens), supra convexiusculis et paululum subplanulatis, ad ultimum rapide crescentibus, sutura impressula separatis; — ultimo maximo, amplio, ad initium superne subangulato, ad apertura rotundato, ad insertionem labri recto; — apertura parum obliqua ac lunata, semirotundata; — peristomate recto, acuto; — marginem columellari superne triangulatim dilatato; — alt. 7-8; diam. 11 mill.

Coquille étroitement perforée, très déprimée, à peine convexe en dessus, bien convexe en dessous, à test mince, élégamment sillonné de stries obliques, peu brillant, transparent, d'une teinte cornée uniforme, et entouré, en outre d'une zonule blanchâtre, çà et là légèrement translucide. Sur quelques échantillons, on remarque en dessous deux à trois petites bandes également blanchâtres et souvent interrompues. Spire peu convexe, à sommet lisse et brillant. Cinq tours peu convexes en dessus, même un peu plans, caractérisés par une partie anguleuse très prononcée chez les supérieurs, un peu moins chez les médians, et finissant sur le dernier par s'émuousser et disparaître entièrement vers l'ouverture. Crois-sance spirale d'abord lente et régulière, ensuite très rapide au dernier. Suture médiocrement accentuée. Dernier tour ample, très grand, faiblement subanguleux à son origine, exactement rond vers l'ouverture, et offrant en dessus, vers l'insertion du bord, une direction bien droite. Ouverture peu oblique et fai-
blement échancreée, semi-arrondie, entourée par un péristome droit et tranchant. Bord columellaire pourvu à sa partie supérieure d’une dilatation triangulaire.

Cette nouvelle forme, qui paraît bien constante, rappelle par sa zonule blanchâtre, parfois translucide, la « linea isabellina » de la Combesiana (pilifera de Jickeli); elle diffère essentiellement de cette Hélice par de nombreux caractères différentiels, dont voici les plus importants.

Chez la Ferretiana, la croissance spirale, d’abord lente, devient très rapide sur le dernier; aussi ce tour est-il très dilaté, et en disproportion sensible de taille et de grandeur avec les autres. Chez la Combesiana, la croissance est régulière.

L’ombilic de la Ferretiana se trouve réduit à une perforation profonde et étroite; celui de la Combesiana, plus ouvert, laisse apercevoir l’avant-dernier tour.

Le test, notamment, est très différent chez ces deux espèces. Celui de la Ferretiana, délicat, transparent, assez brillant, sillonné de stries fines et régulières, possède une surface épidermique recouverte d’une multitude de petits poils excessivement courts, ressemblant à un léger duvet et paraissant disposés en rangées très serrées en sens inverse de la direction des stries. Celui de la Combesiana, au contraire, moins transparent, assez fortement plissé, est orné de poils allongés et sensiblement distants les uns des autres.

Ces trois caractères différentiels suffisent pour motiver la séparation de ces deux formes abyssiniennes.

La Ferretiana, que je dédie au voyageur Ferret, compagnon de Galinier, vit à une altitude de 1994 mètres, sous les détritus humides, au mont Zeboul, chez les Gallas Raïas.

HELIX HERBINI (fig. 25-28).

Testa anguste perforata, leviter depressa, potius subglobosa, tenui, subpellucida, non nitente, uniformiter castanea, valide striato-plicatula ac pilis innumerabilibus, condensatis, brevissi-
mis, in plicarum intervallis positis, undique induta; — spira convexa; — apice valido, laevigato; — anfractibus 5-6 convexis, regulariter lenteque crescentibus, sutura impressa separatis; — ultimo rotundato, superne ad insertionem recto; — apertura obliqua, lunato-semirundata; — peristomate recto, acuto; — margin e columellari dilatato, perforationem leviter obtegente; — marginibus remotis, callo vix inconspicuo junctis; — alt. 7; diam. 10 mill.

Coquille étroitement perforée, subglobuleuse, tout en étant, néanmoins, un peu déprimée, à test mince, d’un marron mat uniforme, légèrement transparent, très fortement strié-plissé, et hérisssé, dans l’intervalle des plis, d’une innombrable quantité de petits poils microscopiques, excessivement serrés. Spire convexe, à sommet lisse et robuste. 5 à 6 tours convexes, à croissance lente et régulière, séparés par une suture accentuée. Dernier tour arrondi, non descendant à l’insertion du bord. Ouverture oblique, échancrée, semi-ronde, et entourée par un péristome simple et droit. Bord columellaire dilaté, recouvrant un peu la perforation. Bords marginaux écartés, réunis par une callosité à peine perceptible.

Cette espèce, dédiée à l’un des compagnons de M. A. Raffray, a été recueillie sur les hauts plateaux de l’Hamacen et du Tigré, à une altitude de 2000 à 2500 mètres, entre Keren et Adowa.

L’Herbini se distingue aisément des trois précédentes, par sa forme plus globuleuse; par sa spire plus convexe; par sa perforation plus étroite; par sa croissance lente, régulière, à tours serrés; par son test d’une teinte marron foncé, plus fortement plissé, et sensiblement ondulé, enfin, offrant d’innombrables petits poils, excessivement courts, remplissant l’intervalle des plis.

HELIX GALINIERIANA (fig. 30-33).

Testa angustissime perforata, subglobosa, mediocriter tenui, parum pellucida, leviter nitida, uniformiter castanea, regula-
riter plicosa ac pilis modo brevibus, modo longioribus, inter se distantibus, passim inter plicas sitis, ornata; — spira obtuso-convexa; apice valido, levigato; — anfractibus 5 convexus, lente (in ultimo sat velociter) crescentibus, sutura impressa separatis; — ultimo paululum majore, rotundato, superne recto; — apertura parum obliqua, semiorbundata; — peristomate recto, acuto; — margine columnellari superne triangulatim dilatato; marginibus remotis, callo pallidiore junctis; — alt. 8; diam. 9 mill.

Coquille très étroitement perforée, subglobuleuse, à test médiocrement délicat, peu transparent, faiblement brillant, d'un marron foncé uniforme, régulièrement plissé, et orné, entre les plis, de poils tantôt courts, tantôt plus allongés, et assez distants les uns des autres. Spire obtuse-convexe, à sommet lisse et robuste. Cinq tours convexes, à croissance lente, devenant, sur le dernier, plus rapide. Suture prononcée. Dernier tour un peu plus grand, arrondi, non descendant à sa partie supérieure. Ouverture peu oblique, presque semi-sphérique, entourée d'un péristome simple et tranchant. Bord columnellaire offrant supérieurement une dilatation triangulaire fort courte. Bords marginaux écartés, réunis par une callosité délicate d'une teinte pâle.

Cette Hélice, à laquelle j'attribue le nom du voyageur Galinier, diffère de la précédente par sa forme presque globuleuse, plus ramassée sur elle-même; par sa coloration d'un marron plus foncé; par sa surface régulièrement plissée, et ornée, dans l'intervalle des plis, par des poils peu nombreux, tantôt courts, tantôt assez allongés; par son ouverture moins oblique; par son bord columnellaire plus étroitement dilaté; par sa perforation plus étroite; enfin, par sa croissance spirale un peu plus rapide au dernier tour.

La Galinieri ana vit sur les hauts plateaux aux environs d'Adowa.
HELIX ABISSINICA.

Col de l’Abouna-Yousef, à une altitude de 4024 mètres, dans le Lasta.

HELIX RAFFRAYI (fig. 21-24).

Testa minutissima, anguste perforata (perforatio in ultimo subitò patescens), depressa, opaca, fusca, eleganter in prioribus costulata, in ultimo costulato-lamellata (lamellæ ciliatim in medio ultimi prolongatae); — spira convexa, obtusa; — apice robusto, levigato; — anfractibus 4 angulatis (angulus in ultimo evanescens), convexus, celeriter crescentibus, sutura sat impressa separatis; — ultimo dilatato, subcompresso-oblongo, superne lente descendente; — apertura obliqua, parum lunata, ovata; — peristomate obtusiusculo, inferne leviter patulescente; margine columellari dilatato; — alt.1 1/2; diam. 1 1/4 mill.

Cette magnifique petite espèce, qui rappelle tout à fait notre *aculeata* d’Europe, a été recueillie sous les débris humides
des anfractuosités des rochers du mont Zeboul, chez les Gallas Raïas, par M. A. Raffray, à qui je me fais un plaisir de la dédier.

HELIX ISSELI.

L'*Isseli*, fort bien rendue dans le travail de M. Morelet, est une assez grande espèce (haut. 10-13; diam. 15-18 mill.), étroitement ombiliquée, globuleuse, fort peu déprimée, même un tant soit peu conoïde, à test transparent, d'un brun-corné, sillonné de striations serrées, et orné de 5 à 6 zonules, d'un ton opaque, plus chargées de calcaire que le reste de la coquille. La spire est conoïde, parfois un tant soit peu déprimée. Les tours, au nombre de 5 à 5 1/2, sont séparés par une suture profonde. Le dernier, renflé-globuleux, arrondi, est entouré d'une zonule plus large à sa partie médiane. L'ouverture, oblique, peu échancrée, semi-arrondie dans un sens oblique faiblement oblong-incliné, est pourvue d'un péristome mince, droit et aigu. Le bord columellaire se réfléchit à sa partie supérieure en une courte dilatation triangulaire.

Il existe une variété un peu plus petite (haut. 6; diam. 10 mill.), plus délicatement striée, chez laquelle les zonules sont seulement au nombre de 2 à 3. Chez cette variété, le principe calcaire est un peu plus prédominant.

Cette Hélice est abondante dans le pays des Bogos (Issel).

HELIX LEJEANIANA.

Helix Darnaudi (non Pfeiffer), Jickeli, *Moll. N. O. Afr.*, 1874, pl. IV, fig. B, B' et B'' (seulement !).

Testa angustissime perforata (perfioratio fere tecta), ventroso-globulosa, fragili, diaphana, sat nitente, uniformiter article no 2.
cornea ac zonula opaculo-albescente cincta, conferte striata, in ultimo sat grosse subplicosa ac sub validissimo lente minu-
tissimis lineolis spiralibus fere in conspicuis spiraliter subde-
cussata; — spira obtusa, inflato-rotundata; apice exiguo, nitido ac levigato; — anfractibus 6 convexis, regulariter et sat celeriter crescentibus, sutura impressa separatis; — ultimo ventroso-rotundato, superne descendente; — apertura obliqua, lunata, semisphaerica; — peristomate recto, fragil-
limo; — margine columellari superne triangulatim dilatato ac perforationem fere obtegente; — alt. 12; diam. 15 mill.

Coquille ventru-globuleuse, pourvue d'une perforation excessivement étroite et presque recouverte par la réflexion du bord columellaire. Test fragile, transparent, assez brillant, d'une teinte cornée uniforme avec une zonule blanchâtre–opaque sur le milieu du dernier tour, enfin, très finement sillonné de fines striations serrées, qui deviennent assez gros-
sières et un peu pliciformes vers l'ouverture, et laissant, en outre, apercevoir, sous le foyer d'une forte loupe, une multi-
tude de très petites linéoles spirales, qui donnent à la coquille une apparence légèrement décussée. Spire obtuse, renflée–arrondie, à sommet lisse, brillant et exigu. Six tours convexes, à croissance régulière et assez rapide, séparés par une suture accentuée. Dernier tour rond, ventru, descendant à l'inser-
tion du bord. Ouverture oblique, échancrée, semisphérique, entourée d'un péristome droit d'une extrême fragilité. Bord columellaire offrant, à sa partie supérieure, une dilatation triangulaire, qui recouvre presque la perforation.

Cette Hélice a été parfaitement représentée par Jickeli (fig. 25, B, B' et B''), sous l'appellation erronée de Darnaudi. Ces trois figures (B, B' et B'') suffisent amplement pour la con-
naisance de cette espèce.

La Lejeaniana se distingue de l'Isseli, par sa forme ven-
true-globuleuse, à spire obtuse et non conique; par son test plus mince, très fragile, d'une teinte cornée uniforme transpa-
rente, interrompue seulement par une zonule étroite, blan-
châtre, légèrement opaque et à base calcaire; par sa perforation excessivement étroite, presque entièrement recouverte par la dilatation supérieure du bord columellaire; par son ouverture qui, sans l'échancrure, serait parfaitement ronde (celle de l'Isseli est subarrondie, dans un sens oblique légèrement oblong-incliné).

Cette Hélice a été recueillie sur les hauts plateaux entre Keren et Adowa.

HELIX ACHILLI (fig. 38-40).

Testa anguste perforata, depressa, utrinque convexo-convexa, parum tenui, subopacula, argute striatula, albescente ac zonulis numerosis (10-15) corneo-translucidis, angustissimisque circumcincta; — spira convexa, obtusa; apice laevigato; — anfracetibus 6 convexiusculis, sat celeriter crescentibus, sutura impressa separatis; — ultimo majore, rotundato, ad insertionem descendentem; — apertura parum obliqua, lunata, semirotundata; — peristomate recto, acuto; — margine collumellari superne valde triangulatim dilatato ac supra perfurationem sat reflexo; — alt. 12; diam. 16 mill.

Coquille étroitement perforée, déprimée, aussi convexe-obtuse en dessus qu'en dessous, à test assez résistant, subopaque, finement strié, d'une teinte blanchâtre et orné, en outre, de nombreuses (de 10 à 15) bandes très étroites, d'une apparence cornée un peu transparente. Spire convexe-obtuse, à sommet lisse. Six tours peu convexes en dessus, à croissance rapide, séparés par une suture prononcée. Dernier tour relativement grand, arrondi, descendant à l'insertion du bord. Ouverture faiblement oblique, échancrée, semisphérique, entourée d'un péristome droit et aigu. Bord columellaire triangulairement dilaté à sa partie supérieure, et recouvrant légèrement sa perforation.

Cette espèce, à laquelle j'attribue le prénom de M. Achille Raffray, a été recueillie dans la région chaude entre Massaouah **ARTICLE N° 2.**
et les montagnes de Keren, ainsi que sur les hauts plateaux de l’Hamacen.

L’Achilli ne peut être rapprochée que de l’Isseli, dont elle diffère notamment par sa forme moins globuleuse, plus déprimée; par sa spire convexe-obtuse et non conoïde; par son ouverture plus exactement semisphérique; par son dernier tour moins grand, plus étroitement rond (celui de l’Isseli est arrondi dans un sens incliné un peu oblong); par son test plus calcaire, moins transparent et plus délicatement strié.

HELIX Darnaudi.

La vraie *Darnaudi*, qui vit dans les contrées chaudes et sèches du Sennaar, et qui, je crois, n’a pas été constatée jusqu’à présent d’une manière bien certaine sur les plateaux humides de l’Abyssinie, est une toute petite coquille (haut. 5; diam. 8 mill.) perforée, d’une forme globuleuse-conoïde. Son test rugueux-strié, d’une teinte cornée sublucide, est moucheté de petites fascies où domine le calcaire; la spire est conique; les tours, au nombre de 5, peu convexes, s’accroissent régulièrement et avec assez de rapidité; le dernier, arrondi, est descendant à l’insertion du bord; l’ouverture presque verticale, échancrée, semi-arrondie, est entourée par un péristome simple et droit; le bord columellaire est dilaté supérieurément; les bords marginaux sont un tant soit peu convergents.

Cette Hélice, comme forme, rappelle assez les espèces algériennes du groupe des *Helix Locheana* et *Gibilmanica.*

HELIX HEUGLINI.

Cette petite coquille (haut. 6 1/2; diam. 9 mill.) d’une taille un peu plus forte que la vraie *Darnaudi*, est une forme subglo-
buleuse, étroitement ombiliquée ; son test mince, un peu brillant, striolé, d’une teinte cornée, est moucheté, en dessus, par des flammules opaques irrégulièrement espacées, et, en dessous, par des taches non opaques, mais translucides, disposées en séries spirales et là interrompues ; la spire, courte, obtuse, est moins conique que celle de la Darnaudi ; ses tours, au nombre de 4 1/2, sont médiocrement convexes ; le dernier renflé-arrondi, est rectiligne à l’insertion du bord (celui de la Darnaudi est descendant) ; son ouverture fortement échancrée, semi-arrondie, possède un péristome droit et aigu ; ses bords marginaux sont écartés (ceux de la Darnaudi sont, au contraire, légèrement convergents) ; enfin, son bord columellaire est dilaté à sa partie supérieure.

Cette Hélice, signalée du sud de l’Abyssinie (sans indication de localité), a été découverte par le voyageur Heuglin, ancien consul d’Autriche à Khartoum.

HELIX HAMACENICA (fig. 41-43).

Helix hamaconica, Raffray.

Testa anguste umbilicata, subgloboso-depressa, supra sat convexa, solida, cretacea, uniformiter candida, eleganter striatula (striœ oblique, sat undulata) ; — spira convexa ; apice exiguo, kevigato, corneo ; — anfractibus 6 sat convexis, regulariter lenteque crescentibus, sutura impressa separatis ; — ultimo subcompresso-rotundato, ad aperturam relative suboblongo, superne lente descendente ; — apertura obliqua, parum lunata, transverse suboblonga ; peristomate recto, acuto, intus valide incrassato, inferne patulescente ; — margine columellari valido, superne dilatato ; — marginibus approximatis, tenui callo junctis ; — alt. 40 ; diam. 15 mill.

Coquille étroitement ombiliquée, subglobuleuse-déprimée, assez convexe en dessus, à test solide, crétacé, élegantement sillonné de stries obliques subondulées, et d’une belle teinte blanche uniforme. Spire convexe, à sommet petit, lisse et corné. Six tours relativement convexes, à croissance lente et ARTICLE N° 2.

Ça et là dans les prairies sur les hauts plateaux de l'Hammec.

HELIX SUBNIVELiNA (fig. 44-46).

Testa perforata, subgloboso-depressa, supra convexa, solidula, leviter subpellucida, subcretacea, candida, argute striatula, in ultimo sat grosse striata; — spira convexa; apice minuto, lœvigato, corneo vel atro; — anfractibus 6 convexiusculis, regulariter lenteque usque ad ultimum, deinde velciter, crescentibus, sutura impressa separatis; — ultimo magno, sat amplo, rotundato, superne recto, non descendant; — apertura parum obliqua ac lunata, subrotundata; — peristomate recto, acuto, intus non incrassato, ad basin non patulescente; — margine columellari tenui, superne vix dilatato; — marginibus sat remotis, callo insconsipio junctis; — alt. 40; diam. 45 mill.

Coquille perforée, subglobuleuse-déprimée, convexe en dessus, à test subcrétacé, blanc, faiblement transparent, très finement striolé, sauf sur le dernier tour, où les stries sont grossières et parfois assez fortes. Spire convexe, à sommet exigu, lisse, d'une teinte cornée ou noircière. Six tours moyen-nement convexes, à croissance lente et régulière jusqu'au dernier, où elle devient rapide. Suture accentuée. Dernier tour ample bien rond, rectiligne supérieurement et non descendant. Ouverture faiblement oblique, peu échanée, presque ronde, entourée par un péristome droit, aigu, non encrasé et non patulescent à la base. Columelle délicate, légèrement dilatée.
à sa partie supérieure. Bords marginaux assez écartés, réunis par une callosité à peine perceptible.

Habite, avec la précédente, sur les hauts plateaux de l'Hamacen.

Cette Hélice se distingue de l'Hamacenica par son test moins épais, moins calcaire; par ses striations, qui, de fines et régulières, deviennent grossières et beaucoup plus fortes sur le dernier tour; par sa croissance spirale lente jusqu'au dernier tour, qui prend un accroissement relativement rapide, tout en devenant plus ventru et bien arrondi; par son ouverture moins oblique, plus ronde, à péristome très mince, tranchant, non bordé intérieurement et non patulescent à la base; par son bord columellaire délicat, à peine dilaté à sa partie supérieure; par son dernier tour rectiligne, et non descendant, etc.

Ces deux Hélices, qui, sans aucun doute, sont des espèces accidentellement importées sur les hauts plateaux de l'Hamacen, rappellent, par leur physionomie, les formes syriennes ou de la basse Égypte de la série de la nivea (1).

BULIMUS.

Si les Hélices abyssiniennes offrent presque toutes de grands rapports de ressemblance avec celles de notre continent, il n'en est pas de même des Bulimes.

Les influences climatériques de cette région, qui ont eu, en effet, assez de puissance pour imprimer aux Hélices des traits quasi européens, se sont manifestées, chez les Bulimes, dans un tout autre sens; elles ont accentué, chez quelques espèces, des caractères essentiellement africains, tandis qu'elles ont donné à d'autres une physionomie américaine, qu'on ne saurait méconnaître.

(1) Helix niveolina, Bourguignat, 1870 (Helix nivea, Ziegler, in Anton. Verz., p. 37, 1893, et, Pfeiffer, Symb. Hist. Hel., II, 1812, p. 34. — Non, Helix nivea de Gmelin, Syst. nat., p. 3639, 1790, qui est une espèce différente de la série de la striata de Müller, 1774 (non, Draparnaud, 1805).

ARTICLE N° 2.
Les Bulimes de l’Abyssinie sont au nombre de 17. J’en excepte le lamprodermum (1) qui n’est pas de ce pays.
Les 17 Bulimes peuvent se répartir en 6 groupes distincts.

1° Groupe du Raffrayi.
Bulimus Raffrayi, Bourguignat.
Bulimus Herbini, Bourguignat.
Bulimus Simonis, Bourguignat.
Bulimus Achilli, Bourguignat.
Bulimus Tamisierianus, Bourguignat.

2° Groupe de l’Olivieri.
Bulimus Olivieri, Pfeiffer.
Bulimus Abbadianus, Bourguignat.
Bulimus Jickelianus, Nevill.

3° Groupe de l’Abyssinicus.
Bulimus abyssinicus, Pfeiffer.
Bulimus Galinierianus, Bourguignat.
Bulimus Lejeanianus, Bourguignat.
Bulimus Hemprichi, Jickeli.

4° Groupe du cœnopictus.
Bulimus sennaaricus, Bourguignat.
Bulimus æthiopicus, Bourguignat.

5° Groupe de l’eminulus.
Bulimus subeminulus, Bourguignat.
Bulimus macroconus, Bourguignat.

6° Groupe de l’insularis.
Bulimus insularis, Albers.

(1) Le Bulimus lamprodermum (Morelet, in Journ. conc., 1879, p. 315, pl. XII, fig. 6), signalé d’une haute montagne de l’Abyssinie, est une espèce recueillie par M. G. Revoil, lors de son premier voyage, sur le pic de Meraya, dans le pays des Comalis. M. G. Revoil a donné lui-même cette coquille à un marchand-naturaliste de Marseille, qui, ne se souvenant plus de sa provenance, l’a adressée à M. Morelet comme espèce abyssinienne. Je dois ajouter que ce Bulime me paraît distinct de tous ceux que j’ai décrits du pays comalis, et qu’il mérite d’être conservé comme espèce.
De ces groupes d'espèces, deux (gr. des abyssinicus (1) et eminulus) me semblent africains, bien que plusieurs auteurs aient classé l'eminulus et l'abyssinicus dans des séries étrangères à ce continent; trois autres (gr. des Olivieri, cœnopictus et insularis) me paraissent asiatiques; enfin, celui du Raffrayi est, à mon sens, américain.

Lorsque M. A. Raffray, qui, comme on le sait, est un savant entomologiste, me remit sa collection de Mollusques, il m'avertit qu'il avait constaté, parmi ses Insectes abyssiniens, non seulement des formes analogues à celles de nos Alpes Carniques, mais encore des espèces similaires à celles des Andes de l'Amérique du Sud. J'avoue, quand ce savant voyageur me fit part de ses observations, que je restais un peu incrédule au sujet d'un fait aussi étonnant. Maintenant, depuis l'étude que je viens de faire des Bulimes de la série des Raffrayi, je reconnais la justesse du jugement de M. Raffray, et je crois que, s'il existe des Bulimes semblables à ceux des Andes, il doit également se trouver des Insectes à physionomie américaine.

Toutes les espèces du groupe du Raffrayi n'ont d'analogues, en effet, que parmi les nombreux Bulimes des Andes des Républiques de l'Équateur et de la Nouvelle-Grenade.

Ainsi le Raffrayi ressemble comme taille, comme forme et comme caractères, au Bulimus Cotopaxensis (Pfeiffer, 1851, et in 2e édit., Chemnitz, p. 103, pl. XXXIII, fig. 9-10) de la haute montagne du Cotopaxi, dans la République de l'Équateur;

Le Simonis, — au Bulimus nigrolimbatus (Pfeiffer, 1851, et in 2e édit., Chemnitz, p. 81, pl. XXI, fig. 26-30) des Andes de la Nouvelle-Grenade;

L'Herbini, — au Bulimus meleagris (Pfeiffer, 1851, et in 2e édit., Chemnitz, p. 81, pl. XXI, fig. 24-25), également des Andes de la Nouvelle-Grenade;

L'Achilli, — au Bulimus anthisanensis (Pfeiffer, 1851, et

(1) La Glandina Boivini (Morelet, Sér. Conchyl., II, 1860, p. 72, pl. V, fig. 5), de Montbaza, sur la côte de Zanguebar, est une espèce de ce groupe.

Article n° 2.
in 2e édit., Chemnitz, p. 104, pl. XXXIII, fig. 20-21) de la montagne Anthisana (14000 p. a.), de la République de l'Équateur; etc., etc.

Si je viens seulement de mentionner quelques espèces des Andes, il ne faut pas croire pour cela que ce sont les seules qui offrent des rapports de ressemblance; il se trouve, au contraire, dans ces hautes montagnes américaines toute une série de Bulimes qui rappellent ceux de l'Abyssinie.

En somme, en réfléchissant bien à ces analogies spécifiques, on reconnaît que ce fait, qui d'abord paraît surprenant, n'a rien de bien extraordinaire.

Les montagnes de l'Abyssinie s'élèvent entre le cinquième et douzième degré de latitude nord; celles des Andes se trouvent sous une latitude semblable; les sommités de ces chaînes, si éloignées l'une de l'autre, atteignent à peu près les mêmes altitudes : dans l'Abyssinie elles varient entre 3500 à 4600 mètres; dans les Andes, de 3500 à 5000; les pluies sont aussi continues dans l'une comme dans l'autre région; par conséquent, les conditions de chaleur, d'humidité, de froid ou de sécheresse sont pour ainsi dire similaires.

Il n'y a donc rien d'étonnant à ce que des influences climatériques identiques aient donné à ces Bulimes, si distants les uns des autres, un cachet tout particulier de ressemblance.

Les Bulimes du groupe du Raffrayi sont des espèces de forme ventrue-oblongue ou ovoïde, à test assez mince plus ou moins transparent, et caractérisées par un bord péristomal obtus, non réfléchi, simplement patulescent, intérieurement épaisse, et pourvu extérieurement d'un encrassement formant bourrelet.

Ces espèces peuvent se classer de la manière suivante :

A. — Une perforation. — Columelle rectiligne sans sinus supérieur.

Coq. grande, oblongue-ovoïde, à costulations très écartées.

Bulimus Raffrayi.
** Coq. oblongue, à costulations rapprochées :
Bulimus Herbini.

*** Coq. courte, ventrue, à costulations seulement supérieures et très saillantes :
Bulimus Simonis.

B. — Pas de perforation. — Columnelle avec un sinus supérieur.

* Coq. oblongue, à costulations saillantes et écartées :
Bulimus Achilli.

** Coq. ovale-ventrue, costulée seulement le long de la suture du dernier tour :
Bulimus Tamisierianus.

BULIMUS RAFFRAYI (fig. 77-78).

Testa minute perforata (perforatio exigua, fere omnino tecta), ovoidéo-oblonga, ventrosa, sat tenui, mediocrer pel-lucida, uniformiter epidermide luteo-castaneo induta, eleganter costata (in prioribus (supremo excepto) ac medianis costae validae, oblique productæque, in ultimo minus oblique, magis distantes, hebetes et ad aperturam irregulariter subevanidae), ac in ultimis inter costas lineolis spiralibus granulosisque eximie decussata; — spira oblongo-obtusiuseula, ad summum obtusa; — apice valido, laevigato, pallidiore, superne planulato; — anfractibus 7 convexusculus, regulariter crescentibus, sutura leviter fimbriata ac subimpressa separatis; — ultimo magno, dimidiam altitudinis superante, convexo, superne lente descendente; — apertura subobliqua, oblonga, intus albido-margaritacea; margine externo exacte convexo; columnella recta, alba, superne supra perforationem dilatata, inferne acuminata; — peristomate candido, obtusiusculo, intus leviter incassato, subpatulescente, non reflexo; — marginibus remotis, callo albo junctis; — alt. 35; diam. 18; alt. ap. 20 mill.

Coquille ovoïde-oblongue, tout en étant ventrue, assez

Cette superbe espèce, dédiée à M. A. Raffray, a été recueillie par ce voyageur, à une altitude de 3000 mètres sur le mont Aladié dans l’Anderta.

BULIMUS HERBINI (fig. 74).

Testa minute perforata (perforatio profunda, subsecta), oblonga, mediocriter ventrosa, sat solida, parum pellucida, uniformiter lutea, eleganter costulata (costulae confertae, obl-
J.-R. BOURGUIGNAT.

Coquille de forme oblongue, médiocrement ventrue, assez solide, peu transparente, d’un jaune uniforme, et pourvue d’une perforation étroite, profonde et faiblement recouverte. Test élégamment sillonné par des costulations serrées, obliques, bien régulières, devenant de plus en plus robustes en approchant de l’ouverture, sauf à la base du dernier tour, où elles s’émoussent et finissent par disparaître. Sous le foyer d’une forte loupe, le test laisse encore apercevoir une multitude de très fines linéoles spirales. Spire assez allongée, s’atténuant en un sommet robuste, obtus, mamelonné, lisse et d’une teinte plus foncée. Sept tours peu convexes, séparés par une suture faiblement prononcée. Croissance régulière, bien qu’un peu rapide. Dernier tour grand, convexe, égalant juste la moitié de la hauteur, lentement descendant à sa partie supérieure, et offrant à sa base, vers la perforation, une angulosité peu accentuée. Ouverture assez oblique, subovale, intérieurement blanchâtre. Bord externe convexe. Columelle obliquement rectiligne, dilatée supérieurement, se terminant en pointe inférieurement. Péristome blanc, faiblement obtus, assez patulescent, non épaissi à l’intérieur et entouré extérieurement par une zone étroite et émoussée, simulant un bourrelet. Bords

ARTICLE N° 2.
marginaux convergents, réunis par une délicate callosité transparente et sans coloration.

Ce nouveau Bulime, auquel j’ai attribué le nom d’un des compagnons de M. A. Raffray, vit également à une altitude de 3000 mètres sur le mont Aladjé dans l’Anderta.

L’Herbini se distingue du Raffrayi par sa taille moindre; par sa forme oblongue peu ventrue; par son test plus robuste, d’une belle teinte jaune; par son sommet mamelonné; par sa columelle oblique; par son ouverture presque ovale, d’une teinte moins blanche à l’intérieur; par ses bords convergents, moins écartés; par son péristome non épaissi intérieurement, un peu plus patulescent et ceint extérieurement par un bourrelet obtus, un tant soit peu plus saillant que celui du Raffrayi; par son dernier tour égalant juste la moitié de la hauteur, et ne la dépassant pas; enfin, surtout, par ses costulations serrées, moins grosses, moins larges, et par ses linéoles spirales plus délicates, non granulées, visibles seulement sur le dernier tour. Chez le Raffrayi, les linéoles spirales apparaissent dès l’origine de l’avant-dernier tour.

BULIMUS SIMONIS (fig. 63).

Testa angustissime perforata (perforatio subtecta), curta, perventrosa, tenui, subpellucida, uniformiter pallide olivacea, eleganter costata (costae primo minuta, deinque in medianis paulatim validiores et confertiores, tandem liriformae productioresque et ad basin ultimi evanescentes); — spira breviter conica; — apice valido, lævigato, obtuso, superne sicut planulato; — anfractibus 6 convexis, regulariter crescentibus, sutura impressa separatis; — ultimo magno, ventroso, dimidiam altitudinis attingente, superne ad insertionem labri lente descendente; — apertura sat obliqua, subovata, intus obscure subcarneola; — columella subalbida, superne dilatata, ad basin acuminata; — peristomate recto, inferne leviter vix subpatulescente, acuto, intus carneo-albidulo ac subincrassa-
tulo; — marginibus sat remotis, callo diaphano, vix perspicuo junctis. — Alt. 22; diam. 14; alt. ap. 11 mill.

Coquille écourtée, très ventrue, mince, subtransparente, d’une teinte uniforme pâle olivâtre, et pourvue d’une perforation très étroite, à moitié recouverte. Test élégamment sillonné de côtes, d’abord délicates, puis, sur les tours médians, plus fortes et plus serrées, enfin, devenant liratiformes très saillantes sur la partie supérieure du dernier tour, tandis qu’elles disparaissent complètement à sa partie inférieure, où elles sont remplacées par de très fines striations. Spire brièvement conique, à sommet robuste, obtus, lisse, et comme aplati en dessus. Six tours convexes, à croissance régulière, séparés par une suture prononcée. Dernier tour grand, ventru, égalant la moitié de la hauteur, et offrant à l’insertion du bord externe une lente direction descendante. Ouverture passablement oblique, subovale, d’une teinte faiblement carénéolée à l’intérieur, entourée par un péristome droit, aigu, très légèrement épaissi intérieurement par un faible enrassement d’un ton de chaire blanchâtre, et offrant, vers sa base, une légère patulessence. Columelle un peu blanche, dilatée à sa partie supérieure et s’acuminant inférieurement. Bords assez écartés, réunis par une callosité diaphane peu apparente.

Cette espèce, remarquable par sa forme ventrue-écourtée, et par son dernier tour lisse en dessous, tandis qu’il est fortement costulé à sa partie supérieure, est bien différente des deux précédentes. Elle a été également recueillie dans le massif du mont Aladjié, ainsi que sur les hauts plateaux de l’Anderta. Elle est dédiée à M. Simon, l’un des compagnons de voyage de M. A. Raffray.

BULIMUS ACHILLI (fig. 75-76).

Testa imperforata ac non rimata, oblonga, tenui, obscure pellucida, uniformiter brunnea vel fusca, eleganter costulata (costae in suprnis (apice excepto) productae, confertae ac sat M. Simon, l’un des compagnons de voyage de M. A. Raffray.

ARTICLE N° 2.
Coquille tout à fait imperforée (sans aucune trace de fente), oblongue, mince, faiblement transparente, d’une teinte uniforme brune ou fauve. Test élégamment costulé, à l’exception du sommet, par des côtes saillantes, serrées et assez obliques chez les tours supérieurs et devenant peu à peu, sur les derniers, moins obliques, plus émoissées et plus larges; enfin orné, en outre, de très fines petites linéoles spirales (granuleuses vers l’ouverture) qui donnent à la surface une apparence décussée. Spire oblongue, obtuse à sa partie supérieure. Sommet lisse, robuste, et comme plan en dessus. Sept tours faiblement convexes, à croissance régulière, séparés par une suture plus accentuée au dernier qu’entre les autres. Dernier tour convexe, égalant la moitié de la hauteur, et offrant supérieurement une lente direction descendante. Ouverture peu oblique, suboblongue, bien convexe du côté externe, et entourée par un péristome aigu, légèrement subpatulescent et un peu épaissi intérieurement par un encrassement blanchâtre. Colomelle d’une nuance blanche mal définie, rectiligne, acuminée à la base, dilatée supérieurement, et caractérisée par une dépression subcanaliforme. Bords marginaux réunis par une callosité à peine perceptible.

Ce beau Bulime, auquel j’attribue le prénom de M. Achille
Raffray, a été recueilli par ce voyageur sur le mont Abouma Yousef, à une altitude de 4024 mètres.

BULIMUS TAMISIERIANUS (fig. 80).

Testa imperforata, oblongo-ventrosa, parum pellucida, solidula (ad aperturam sat crassa), castanea ac prope peristoma luteo-albicante, in supremis minute costulata, in ultimis laevigata vel sub validissimo lente striatula et lineolis perexilibus decussata, tandem, circa suturam costata (costae validae productae); — spira attenuato-subacuminata; apice laevigato, obtusiusculo; — anfractibus 7 convexusculis, lente crescentibus, sutura inter supremos simplici et vix impressa, inter ultimos subfimbriata ac magis magisque impressiore, separatis; — penultimo ventroso; — ultimo ad aperturam mediocri, convexo, sicut angustato, dimidiam altitudinis non aequante; — apertura fere verticali, subsemiovata, sat lunata, intus albescente; — columella robusta, recta, intus leviter flexuosa, superne dilatata ac subcanaliculata; — peristomate crasso, obtuso, extus labiato, ad basin columellae leviter subpatulo; — marginibus callo diaphano ac nitidissimo junctis. — Alt. 26; diam. 11; alt. ap. 12 millim.

Coquille imperforée, ventrue, oblongue-atténuée, peu transparente, assez solide et sensiblement épaisse aux abords de l'ouverture, où elle prend un ton jaune blanchâtre, qui tranche sur la teinte générale d'une nuance marron uniforme. Test délicatement costulé sur les premiers tours, présentant, sur les derniers, une surface lisse ou très finement striée par de petites striations transverses et spirales, enfin, offrant, en outre, à la partie supérieure, de fortes côtes émoussées, saillantes seulement le long de la suture. Spire atténuée, bien que légèrement obtuse, à sommet lisse; Sept tours faiblement convexes, sauf l'avant-dernier qui est très ventru, s'accroissant lentement, et séparés par une suture, d'abord simple et peu profonde entre les supérieurs, devenant ensuite, entre les derniers, subfimbriée et de plus en plus profonde. Dernier tour médiocre,
convexe, comme contracté, n'atteignant pas la moitié de la hauteur. Ouverture presque verticale, semiovalaire, assez fortement échançrée, intérieurement blanchâtre. Columelle robuste, rectiligne, légèrement flexueuse du côté apertural, supérieurement dilaté et comme subcanaliculée. Péristome obtus, épais, subpatulescent à la base et entouré extérieurement par un encrassement obtus, formant bourrelet. Bords marginaux réunis par une callosité diaphane et très brillante.

Ce Bulime, dédié au voyageur Tamisier, a été rencontré sous des rochers, à une altitude de 2000 à 2500 mètres, sur les hauts plateaux de l'Anderta.

Le Tamisierianus se distingue de l'Achilli par son test plus épais; par sa coloration différente; par son dernier tour fortement costulé le long de la suture, lorsque le reste de sa surface est lisse ou très finement décusé par de petites linéoles, visibles seulement à la loupe; par son péristome obtus, extérieurement bordé; enfin, notamment par son avant-dernier tour très ventru, tandis que son dernier, exigu, est comme contracté aux abords de l'ouverture.

BULIMUS OLIVIERI.

Lovell Reeve (Iconogr., V, sp. 339) a donné une bonne figure de cette espèce, ainsi que le Dr Martens, en faisant représenter une variété major (haut. 39; diam. 22 mill.) de ce Bulime.

Ces deux représentations sont suffisantes pour la connaissance de l'Olivieri.

Le type n'a que 27 de hauteur sur 14 de diamètre. Les échantillons trouvés par M. A. Raffray sont intermédiaires, comme taille, entre le type et la variété major signalée par le Dr Martens, ils ont 28 à 30 de hauteur et 15 à 16 de diamètre;
ils proviennent des hauts plateaux de l'Hamacen et de l'Anderta, notamment près du mont Aladjié.

Chez cette espèce, le péristome, relativement épais, est réfléchi dans toute son étendue.

BULIMUS ABBADIANUS (fig. 79).

Testa anguste perforata (perforatio subsecta), oblongo-elongata, solida, fuscula, in supremis (apice excepto) costulata, in ultimo subcostulata (costulae paulatim evanescentes) vel potius striatula, ac lineolis minutissimis spiralibus (ad aperturam granulosis) eleganter cincta; — spira elongato-acuminata; — apice valido, lœvigato, superne planulato sicut truncato; — anfractibus 7 convexusculis, regulariter crescentibus, sutura impressa separatis; — ultimo mediocri, convexo-rotundato, dimidiam altitudinis æquante, ad insertionem breviter ascendente; — apertura obliqua, ovata, intus albida; — columella recta, valida, acuminata, superne dilatata; — peristomate candido, incrassato, undique obtuse reflexo; — marginibus approximatis, tenuissimo callo junctis.

— Alt. 29; diam. 13; alt. ap. 14 mill.

Coquille de forme oblongue-allongée, tout en étant assez ventrue à sa partie médiane. Test calcaire, solide, non transparent, d'une teinte brunâtre, à perforation étroite, un peu recouverte. Épiderme orné, sur les tours supérieurs (sauf l'embryonnaire), de costulations obliques, fortes, régulières, finissant, sur le dernier, par devenir émoussées, au point de ressembler à de simples striations, qui elles-mêmes se trouvent coupées à angle droit par de très fines linéoles spirales; ces linéoles donnent à la surface une apparence granuleuse très accentuée. Spire allongée-acuminée, à sommet robuste, lisse, légèrement plan, comme tronqué, en dessus. Sept tours médiocrement convexes, à croissance régulière, séparés par une suture prononcée. Dernier tour médiocre, convexe-arrondi, égalant la moitié de la hauteur, et très brièvement ascendant à l'insertion du bord externe. Ouer-
ture peu oblique, ovale, intérieurement blanchâtre, entourée par un péristome blanc, encrassé, et réfléchi, dans tout son contour, sous la forme d’un bourrelet obtus. Columelle rectiligne, robuste, dilatée supérieurement et acuminée à la base. Bords marginaux rapprochés, réunis par une callosité délicate.

Mont Aladjié, dans l’Anderta.

Cette espèce, à laquelle je donne le nom du savant voyageur Antoine d’Abbadie, se distingue de *Olivieri* par sa forme moins ventrue, plus allongée; par sa croissance spirale moins rapide; par ses deux derniers tours relativement plus grêles, moins développés; par ses bords péristomaux bien plus rapprochés, etc.

BULIMUS ABYSSINICUS (fig. 59).

L’ombilic, chez cette espèce, ordinairement réduit à une fente étroite, munie d’une petite perforation, arrive insensiblement, sur certains échantillons, à présenter un trou ombilical assez ouvert pour permettre de voir jusqu’à l’extrémité de la spire.

L’Abyssinicus est encore assez variable dans sa taille. Sa hauteur varie de 18 à 25 et son diamètre de 12 à 14 millim. M. Morelet signale du pays des Bogos, entre Maldi et Baga près de Keren, une variété « *B. minor, elongatus, non ventrosus* (alt. 15, diam. 8 mill.) » qui ne me paraît n’être autre chose que l’*Hemprichi* de Jickeli. Ce dernier auteur a donné la représentation (pl. V, fig. 2) sous la désignation A, B, C, D, de plusieurs formes abyssinienes. Les formes A et C représentent le type; quant à celles figurées sous les lettres B et D, qui me sont inconnues, elles ne me semblent pas de vrais *Abyssinicus,*
surtout la forme B, qui est remarquable par l'exiguïté de son dernier tour et par sa croissance spirale lente et régulière.

Ce Bulime paraît abondant sur les hauts plateaux de l'Abys- sinie, où il a été recueilli à une altitude de 2000 à 2500 m., aux environs de Keren chez les Bogos, d'Addi-Baro dans l'Hlamacen, et de Mékelé dans l'Anderta. Ce même Bulime a été constaté également à Malwah dans l'Inde centrale par MM. Benson et Stolizka, où il a été acclimaté, suivant l'opinion de M. Blandford.

BULIMUS GALINIERIANUS (fig. 60).

Testa profunde perforata ac breviter rimata, ovato-acuminata, in medio sat ventrosa, subtenui, subdiaphana, sordide albido-lutescente, elegant er costulata (costulæ validæ, con- fertæ, nitidæ, regulares et subarcuato-oblique); — spira conico-elongatula, ad summum obtusiuscula; — anfractibus 7 convexiusculis, regulariter lenteque crescentibus, sutura impressa separatis; — ultimo magno, dimidiam altitudinis æquante, convexo, superne recto, ad basin circa perforatio- nem coarctato; — apertura fere verticali, biangulata (angulus superior acutus; inferior ad basin columella subacutus), externe convexa; — columella intus sublamellosa, brevi, recta, superne dilatata, inferne acuminata; — peristomate acuto, recto, ad basin patulescente; — marginex externo exacte convexo; — marginibus remotis, callo junctis. — Alt. 22; diam. 11; alt. ap. 11 mill.

Coquille ovale-acuminée, assez ventrue à sa partie médiane, légèrement transparente, assez mince, d'une teinte blanche- jaunacée sale, et pourvue d'une profonde perforation se termi- nant sous l'apparence d'une fente. Test élégamment sillonné par des costulations brillantes, serrées, saillantes et oblique- ment subarquées. Spire allongée-conoïde, à sommet lisse et un peu obtus. Sept tours légèrement convexes, à croissance lente et régulière, séparés par une suture prononcée. Dernier tour grand, convexe, égalant la moitié de la hauteur, rectiligne à sa
partie supérieure, et contracté légèrement à la base autour de
la perforation ombricale. Ouverture presque verticale, anгу-
leuse supérieurement et inférieurement, convexe du côté exté-
rieur, et entourée par un péristome aigu, droit, patulescent à
la base. Columelle courte rectiligne avec un pli sublamelli-
forme intérieur, acuminée à sa partie inférieure, et très dilatée
supérieurement. Bords marginaux écartés, réunis par une
callosité.

Cette nouvelle espèce, dédiée au voyageur Galinier, se dis-
tingue de l'abyssinicu$ par sa forme moins ventrue au niveau
du dernier tour; par sa perforation plus étroite; par ses costu-
lations plus fines, plus serrées; par son dernier tour relative-
ment plus haut, par cela même un peu moins ventru; par son
bord columellaire sublameilleux, plus court, plus recto-oblique,
relativement plus dilaté supérieurement et plus acuminé à la
base; par son ouverture presque verticale, caractérisée par
une angulosité à la base de la columelle; par son péristome
patulescent seulement à sa partie inférieure (chez l'abyssinicu$,
la réflexion péristomal se fait sentir jusqu'à moitié du bord
externe); par ses bords marginaux plus écartés; enfin, par sa
spire plus exactement conique, à croissance plus régulière,
composée de tours moins convexes, séparés par une suture un
peu moins profonde.

Le Galinierianus a été recueilli aux environs d'Addi-Hohalla
(2123 mètres), sur les hauts plateaux de l'Hamacen.

BULIMUS LEJEANIANUS (fig. 61).

Testa perforata ac berviter rimata, curta, ventrosa, superne
breviter conica, subtenui, subdiaphana, obscure griseo-albi-
dula, valide costulata (costae oblique, liratiformae, strictae,
productae, regulares ac inter se sat distantes); — spira brevi,
conica, ad summum subacuta (apex laevigatus); — anfracti-
bus 7 convexiusculis, lente crescentibus, sutura mediocriter
impressa separatis; — ultimo maximo, ventroso, dimidiam
altitudinis aequante, superne recto aut leviter ascendente,
Coquille perforée et brièvement rimée, ventrue, d'une forme écortée, terminée en cône assez court, à test subdiaphane, assez mince, d'une teinte obscure grise blanchâtre. Surface fortement sillonnée par des côtes obliques, comprimées, régulières, saillantes comme liratiformes et assez écartées les unes des autres. Spire courte, conique, à sommet lisse et assez aigu. Sept tours peu convexes, à croissance lente, séparés par une suture peu profonde. Dernier tour très grand, ventru, égalant la moitié de la hauteur, offrant, à sa partie supérieure, une direction rectiligne ou légèrement ascendante, et, à sa partie inférieure, une base un tant soit peu contractée autour de la perforation. Ouverture à peine oblique, semi-ovale, entourée par un péristome droit, aigu, patulescent seulement à la base. Columelle courte, rectiligne, légèrement contournée-lamelleuse à l'intérieur. Bords marginaux rapprochés, réunis par une callosité.

Ce Bulime, remarquable par sa taille écortée, par sa forme très ventrue, par ses tours supérieurs à croissance lente et serrée, par ses costulations plus écartées, comprimées bien que plus saillantes, est une forme très distincte des précédentes.

Le Lejeanianus a été rencontré aux environs d'Ailet, dans la région basse du littoral, ainsi que çà et là sur les hauts plateaux, à une altitude de 2000 à 2500 mètres.

BULIMUS HEMPRICHI (fig. 62).

Bulimus Hemprichi Jickeli, _Moll. N. O. Afr._, 1874, p. 106, pl. V, fig. 3.

Cette espèce, caractérisée par sa forme allongée, par ses tours bien convexes, est remarquable par son dernier tour
ventru, dont la taille n’atteint pas la moitié de la hauteur; chez les *abyssinicus*, *Galinierianus* et *Lejeanianus*, le dernier égale toujours, ou même parfois dépasse la moitié de la longueur.

L’ouverture subarrondie, très portée à droite, parait excentrique par rapport à l’axe columellaire; enfin, la columelle ne possède pas de pli interne.

L’*Hemprichi*, qui a été signalé chez les Bogos, entre Maldi et Gaba, a été retrouvé sur les hauts plateaux de l’Hamacen. Les échantillons de ces plateaux, plus grands (haut. 21, diam. 10 mill.) que ceux signalés par Jickeli (1), peuvent constituer une *varietas major*.

BULIMUS Sennaariicus.

Ce petit Bulime, découvert dans le Sennaar, a été rencontré par M. A. Raffray, aux environs de Massaouah, ainsi que sur les hauts plateaux de l’Hamacen, enfin, au col (4024 m.) de l’Abouna Yousef, dans le Lasta.

Je rapporte le *cerealis* au *sennaariensis*, parce que je ne puis trouver aucune différence entre eux.

Les figures que je viens de citer en synonymie suffisent pour la connaissance de ce Bulime.

Il ne m’est pas possible de mentionner les localités abyssiniennes signalées par Jickeli, parce que cet auteur a confondu,

(1) L’échantillon type, représenté par Jickeli, a 15 de hauteur et 8 de diamètre.

(2) Les règles de la nomenclature ne me permettent pas d’adopter la désinence *ensis*. Cette désinence ne peut s’appliquer qu’à un nom de localité, et non à celui d’une contrée, d’un fleuve ou d’une montagne.
sous une même appellation, toutes les formes de ce groupe. Par suite de cette confusion, je ne puis savoir, en effet, si une localité convient plutôt au sennaaricus qu’à l’ethiopicus. Dans le doute, et pour ne pas commettre d’erreur, je suis forcé de les passer sous le silence.

A cette liste, il conviendrait encore de joindre, dans le cas où l’on désirerait adopter le système du docteur Jickeli, les Bulimus Asterianus Dupuis, 1849, — Bulimus Doriae Issel, 1865, — Bulimus gemmulus Benson, — Buliminus Fabianus Gredler, 1875, — enfin les Bulimus maharasicus, Euphraticus, marebiensis, kuriensis et Reboudi, que j’ai publié en 1876.

Ce système, qui a pour principe la réunion, sous une appellation commune, de toutes les formes d’un même groupe, est tout simplement un système faux, qui ne peut produire que les confusions les plus déplorables. Ce sont ces mêmes principes qui ont amené certains auteurs à ranger tous les Ancyles sous le nom de fluviatilis, et toutes les Anodontes sous celui de mutabilis.

ARTICLE N° 2.
J'ai examiné, avec soin, toutes les formes *œnopictiennes* d'Asie et d'Afrique (1), et j'avoue que j'ai reconnu chez chacune d'elles des signes différentiels suffisants qui motivent leur conservation. Je n'ai pas recherché, il est vrai, si ces signes étaient le résultat de l'influence des milieux (ce qui, pour moi, ne fait pas l'ombre d'un doute) ou celui d'une autre cause. Il m'a suffit de les constater pour que je me crois autorisé à conserver à ces espèces leur rang spécifique.

Voici la liste de ces espèces :

Bulimus Euphraticus Bourguignat, *spec. nov.*, n° 30, 1876. — Du bas Euphrate.

Bulimus Marebiensis Bourguignat, *spec. nov.*, n° 31, 1876. — D'Arabie.

Bulimus Kursiensis Bourguignat, *spec. nov.*, n° 32, 1876. — D'Arabie.

(1) J'ai laissé de côté les formes américaines, qui, toutes, malgré leur air de parenté, sont différentes de celles de l'ancien continent.

(2) Voici la description d'Hutton : « Shell about 2 1/2 lines in length; words 8; spira rather obtuse; colour brown; aperture rounded; margins reflected and interrupted by the whorl. — Beana. »
les côtes sud de France. (Espèce vraisemblablement importée.)

Bulimus Reboudi Bourguignat, *spec. noviss.*, n°33, 1876. — D’Algérie.

A ces espèces *œnopictiennes*, que je crois devoir conserver, j’ai encore à ajouter une nouvelle d’Abyssinie, le :

BULIMUS ETHIOPICUS.

Ce Bulime, remarquable par son ombilic profond, relativement très ouvert, est surtout caractérisé par son dernier tour porté à droite, et un peu excentrique par rapport à l’axe; l’ouverture est plus arrondie et le bord externe plus convexe que chez le *sennaaricus*; le dernier tour, légèrement subanguleux autour de l’ombilic, offre, à sa partie supérieure, une direction ascendante accentuée; les tours, au nombre de six, sont moins franchement convexes et la suture moins profonde.

Le docteur Jickeli (*Moll. N. O. Afr.* pl. V, fig. 1, D et E

Article n° 2.
seulement) a donné sous le nom de fallax une assez bonne représentation de cette forme. Ces figures sont suffisantes si l'on veut bien les étudier avec soin, pour la connaissance de cette espèce.

L’*Ethiopicus* a été recueilli par M. A. Raffray sur les hauts plateaux de l’Hamacen et de l’Anderta, ainsi qu’au col (4024 m.) de l’Abouna Yousef, où il vit sous les pierres et les détritus.

Bulimus Subeminulus (fig. 70-71).

« Voici encore un mollusque des environs de Keren, dit M. Morelet, qui vient augmenter la liste de ceux que l’on rencontre à la fois sur les deux côtés opposés de l’Afrique. Les espèces qui présentent ce cas de disjonction ont toutes pour caractère, au moins celles qui vivent à l’air libre, d’être plus petites et plus faibles sur le sol de l’Abyssinie. Ainsi le *Bul. eminulus* qui atteint 12 mill. de longueur au Gabon, n’en compte que 9 ici ; il n’y a pas d’autre différence à signaler. »

Il est présumable que l’honorable auteur n’aura eu entre les mains que quelques échantillons incomplètement adultes.

Le Dr Jickeli (*Moll. N.-O. Afr.*, 1874, p. 103), de son côté, a mentionné, de la montagne Rora-beit-andu, dans l’Hamacen,

(1) *Bulimus eminulus* Morelet, in *Rev. zool.*, 1848, p. 353, et in *Sér. conch.*, I, 1858, p. 14, pl. 1, fig. 6. — « Testa perforata, turrito-subulata, pel-lucida, cornea, tenuis, minutissime striata ; anfr. 8 convexi ; ultimus ventricu-losus, testan dimidians ; apex acuminatus ; apertura ovata, mediocris ; perist. simplex, acutum ; columna recta, albescent, ad umbilicum breviter expansa. — Long. 12, diam. 5 millimètres. »

Je ferai remarquer que, chez l’*eminulus* figuré par M. Morelet (*Sér. conch.*, I, pl. 1, fig. 6), le dernier tour égale le tiers seulement et non la moitié de la hauteur. M. Dohrn (*Malak. Blätt.*, 1866, p. 126) a recueilli ce Bulime dans l’île des Princes, au cap Vert.

Ann. sc. nat., zool., mars 1883.

XV. 8. — Art. N° 2
également sous le nom d'eminulus, une forme qui semble se rapporter à la nouvelle espèce, que j'inscris sous l'appellation de subeminulus pour rappeler les rapports de ressemblance qu'elle offre avec celle du Gabon, rapports qui ont amené les deux auteurs que je viens de citer à la prendre pour celle-ci.

Le subeminulus, qui est, en Abyssinie, le représentant de l'eminulus du Gabon, est une espèce à test agglutinant. Tous les échantillons frais, qu'il m'a été donné d'examiner, ainsi que ceux du Bulime suivant, le macroconus, possèdent une enveloppe de saletés, ou plutôt de mucosités terreuses. Sous cette enveloppe très tenace, le test paraît corné, transparent, brillant, presque lisse, ou, en tout cas, si finement striolé, que les stries sont à peine perceptibles sous le foyer d'une forte loupe. La spire est conique, à sommet obtus, composée de 6 1/2 à 7 tours peu convexes, à croissance exactement régulière, séparés par une suture assez profonde. Le dernier, un tant soit peu subanguleux, sauf vers l'ouverture, où il s'arrondit, n'égale pas la moitié de la hauteur. L'ouverture peu oblique, ovale, anguleuse supérieurement, est entourée d'un péristome droit, tranchant, très fragile. Le bord columellaire, dilaté, recouvre en partie la perforation qui ressemble à une fente. La hauteur est de 10 et le diamètre de 5 millim.

Ces caractères sont exactement ceux indiqués par Jickeli à son eminulus, sauf celui du sommet, qui est considéré comme « acuminato », tandis que je l'ai constaté « obtus ».

Le subeminulus (ou soi-disant eminulus d'Abyssinie) se distingue du vrai eminulus du Gabon : par sa taille moindre, plus conique, à tours moins nombreux (6 1/2 à 7 au lieu de 8), anguleux chez les supérieurs, et dont l'angulosité se fait sentir jusque sur le dernier ; par ses tours faiblement convexes, à croissance bien régulière, et dont le dernier n'atteint pas la moitié de la hauteur ; par son sommet obtus ; par son bord columellaire plus largement et moins brièvement dilaté ; enfin, notamment, par son test agglutinatif.
MALACOLOGIE DE L'ABYSSINIE.

65

BULIMUS MACROCONUS (fig. 72-73).

Ce Bulime, rencontré, avec le précédent, également aux environs de Keren, chez les Bogos, est une forme très distincte du subeminulus dont il diffère par sa coquille plus courte, plus brièvement conique et plus globuleuse-ventrue à la base. Chez cette espèce, les tours s'accroissent lentement jusqu'au dernier, qui prend subitement, en taille et en grosseur, un si grand développement qu'il est tout à fait en disproportion avec les supérieurs. L'angulosité est moins sensible sur le dernier tour que chez le subeminulus. L'ouverture, fort peu oblique, atteint presque la moitié de la hauteur. Le sommet paraît un peu moins obtus, et la fente omnilciale est, pour ainsi dire, entièrement recouverte.

De même que le subeminulus, le macroconus est agglutinant.

Parmi les espèces africaines (1) qui appartiennent à ce groupe, je citerai non seulement l'eminulus du Gabon, mais encore les:

Bulimus Guinaicus. — _Bulimus Guineensis_ Jonas, in Philippi, Abbild., I, p. 54 (oct. 1843), pl. 1, fig. 4. — De Guinée.

Bulimus concentricus Reeve, Iconogr., pl. 88, fig. 656. — De Liberia.

Bulimus milevianus Raymond, in Journ. Conch., 1853, p. 81, pl. 3, fig. 4. — D'Algérie.

BULIMUS INSULARIS.

Pupa insularis Ehrenberg, Symb. phys., 1831.

(1) Je ne serais pas étonné, lorsque l'on connaîtra bien les animaux du groupe de l'eminulus, que l'on reconnaîsse qu'ils appartiennent à la série générique des Pachnodus, avec lesquels ils ont de grandes ressemblances au point de vue de l'ensemble général de la coquille.
Il convient de rapporter encore à cette espèce les *Bulimus contiguus* de Reeve, et *Adenensis* de Pfeiffer.

Ce Bulime se trouve répandu dans le continent africain, depuis la mer Rouge jusqu'à l'océan Atlantique, dans presque toutes les contrées situées entre les dix et vingt-cinquièmes degrés de latitude nord. Je le connais d'Égypte, où il a été recueilli sur les bords du Nil, un peu au-dessus de la première cataracte, par le célèbre voyageur Letourneux, et d'un grand nombre de points du Sahara central (1).

En Abyssinie, M. A. Raffray l'a rencontré abondamment aux environs de Massaouah, dans le pays des Bogos, et surtout le plateau de l'Hamacen.

RAFFRAYA.

Ce nouveau genre, que j'inscris sous le nom du savant voyageur M. A. Raffray, se compose d'espèces allongées-cylindriques, caractérisées par un test cristallin, brillant, d'une coloration hyaline, orné de côtes droites filiformes, très saillantes, formant saillie sur la suture, qui paraît crénelée; par des tours embryonnaires (au nombre de deux) lisses, très obtus et mamelonnés; par une ouverture bi ou tridenticulée, pourvue d'un bord externe arqué en avant, dont le rebord péristonal, d'abord très mince vers l'insertion, s'épaissit subitement, vers ses deux tiers supérieurs, pour donner naissance à une éminence tuberculeuse plus ou moins prononcée.

Les denticulations sont simplement aperturales; la première, *pariétale*, se trouve soit vers l'insertion du bord droit

(1) Il est également commun dans l'Inde et dans l'Arabie.

ARTICLE N° 2.
(filicosta) (1), soit à la partie moyenne de la convexité; la seconde, qui manque chez la Milne-Edwardsi, est columellaire; enfin, la troisième ne consiste qu’en une protubérance plus ou moins exagérée du bord externe vers ses deux tiers supérieurs.

Les Raffraya ont un cachet tout particulier; leur teinte hyaline, leurs costulations semblables à celles des Scalaria; leurs tours embryonnaires lisses et mamelonnés; leurs denticulations aperturales, etc., donnent, en effet, aux coquilles de ce genre une physionomie qui ne permet pas de les classer dans aucun groupe générique connu (2).

M. Morelet, influencé, sans doute, par la présence des denticules, a considéré sa filicosta comme une Auriculidé du genre Carychium. Il m’est impossible d’admettre cette classification, parce que cette filicosta n’a pas l’apparence d’un Carychium. Je crois plutôt que cette espèce, ainsi que celle (3) que je vais décrire, sont des formes génériques nouvelles de la famille des Helicidæ.

La seule Raffraya connue a été découverte (4) dans la forêt de Quisucula près de Bango (Angola), et décrite par M. Morelet en 1868 (Moll., voy. Welw., p. 84, pl. III, f. 35), sous le nom de Carychium filicosta.

La seconde, qui a été trouvée par M. A. Raffray en Abyssinie, est la :

RAFFRAYA MILNE-EDWARDSI (fig. 84-87).

Testa anguste perforata, elongato-cylindrica, leviter attenuata, hyalina, nitida ac eleganter costis productis, lamelliformis, rectis, strictis, ad suturam validioribus ac sicut sub-tuberculosis regulariter ornata; — spira elongata, subatte-

(1) Dans la gravure (pl. 3, fig. 3) donnée par M. Morelet, cette denticulation a été placée, par erreur, au milieu de la convexité.

(2) Ce genre n’a aucun rapport avec les Streptostele de Dohrn, 1866.

(3) Les quelques échantillons de Raffraya que j’ai eus entre les mains étaient vides, par conséquent je n’ai pu vérifier si l’animal possédait deux ou quatre tentacules.

(4) Par M. le Dr Fried. Welwitsch.
nuata, ad summum obtuse manillata; — apice valido, levigato, globuloso; — anfractibus 9 convexiusculis, regulariter lenteque crescentibus, sutura impressa fimbriataque separatis; — ultimo oblongo-convexo, 1/3 altitudinis non attingente, superne perlente recto-ascendente; — apertura obliqua, piriformis, superne ad insertionem labri angustata, bidentata, scilicet: plica parietalis una, minutissima, dentiformis, in medio ventre penultimi sita; altera tuberculosa in margine dextro; — peristomate candido, valido, incrassato, ac undique expanso, præter ad insertionem labri; — columella simplici, brevi, leviter arcuata, dilatata; — margine externo antrorsum angulatim arcuto, ad basin retrocedente; — marginibus remotis, callo diaphano tenui; — Alt. 6 1/2-7; diam. 2 millim.

ARTICLE N° 2.
Cette belle espèce, que je dédie à notre ami M. le professeur A. Milne-Edwards, vit sous les détritus et les bois pourris vers le col de l'Abonna Yousef, dans le Lasta, à une altitude de 4024 mètres.

Cette Raffraya est si distincte de la silicosta, que je crois inutile de signaler les différences qui existent entre ces deux formes, les seules connues jusqu'à ce jour, de ce nouveau genre africain.

ABBADIA.

L'espèce pour laquelle j'établis cette nouvelle coupe générique, en l'honneur du savant voyageur abyssin, M. Antoine d'Abbadie, ressemble à première vue à une Balie d'Europe; mais lorsqu'on l'examine avec attention, on s'aperçoit bien vite qu'elle s'en distingue profondément.

On sait que le caractère essentiel des Balies (1) est de ne posséder aucun pli columellaire, par conséquent d'avoir une columelle simple.

Or, l'espèce abyssinienne offre non pas un petit pli, mais une vraie lamelle saillante, comprimée, contournée, prenant naissance au-dessus de l'avant-dernier tour, pour venir, en s'enroulant autour de l'axe, mourir à la partie supérieure du bord columellaire.

Ce genre devient donc, grâce à cette lamelle clausiliennë, une coupe générique intermédiaire entre les Balia et les Te-mesa d'Europe.

ABBADIA AETHIOPICA (fig. 82-83).

Testa sinistrosa, rimata, elongata, cylindrica, ad summum leviter attenuata, tenera, nitidissima, subaureo-cornea, cum fasciis pallide albescentibus rare passim ornata, elegantissime striatula et in ultimis lineolis spiralis decussata; — spira elongato-subattenuata, superne obtusiuscula; — apice lævigato, valido, obtuso; — anfractibus 9 convexiusculis, regu-

lariter lenteque crescentibus, sutura sat impressa separatis; — ultimo convexo, \(\frac{1}{3} \) altitudinis non attingente, superne recto, ad basin rotundato, in medio prope labrum externum leviter subconcauvisculo; — apertura vix obliqua, ovata, unilamellata (lamella producta, compressa, ad partem superiorem columellae contorta); — peristomate continuo, albido, leviter incrassatulo et undique expansiusculo; — margine externo vix sinuoso; — callo ad insertionem labri subtuberculum minimum fere omnino obsolete obscure emittente. — Alt. 8; diam. 2 1/2 millim.

Cette Abbadie vit sur les troncs d’arbres au mont Zeboul, chez les Gallas-Raïas, à une altitude de près de 2000 mètres.
MALACOLOGIE DE L'ABYSSINIE. 71

ORCULA.

ORCULA IMBRICATA.

Sous les pierres et les détritus à l'Abouna Yousef, dans le Lasta.
Cette espèce, que le Dr Jickeli a eu raison de distinguer, est une forme de la série des Doliolum d'Europe.

PUPILLA.

PUPILLA BRUGUIEREI.

Pupa Heuglini Krauss, in Sched. (teste Jickeli, 1874).

Sous les détritus au mont Zeboul, chez les Gallas-Raïas, et, au col de l'Abouna Yousef dans le Lasta.
Le Bruguierei rappelle la forme de l'Aucapitainiana d'Algérie.

PUPILLA RAFFRAYI.

Pupa fontana Jickeli, Moll. N. O. Afr. 1874, p. 120, pl. V, fig. 11 (seulement); — (non Pupa fontana de Krauss). — (La figure 11' représente l'espèce suivante.)

Cette forme que le Dr Jickeli a assimilée au Pupa fontana de Krauss (Sudaf. Moll., 1848, p. 80, pl. V, f. 6.) du cap de Bonne-Espérance, est, à mon sens, une espèce différente.

Chez le fontana du Cap, l'ouverture est « subangulato-rotundata », par suite de son bord externe, qui, déclive-rectiligne vers son insertion, donne lieu à une angulosité; l'ombilic est peu profond; le péristome aigu, très faiblement réfléchi, assez mince, est à peine épais; les quatre denticulations sont, il est
vrai, semblables à celles du Raffrayi, mais, sur les deux palatales, la supérieure seule accuse extérieurement une petite fosse, ou scrobicule. Or, comme ce scrobicule se trouve situé à la partie moyenne du tour, il résulte de cette disposition que ce tour est convexe à la base et non subanguleux.

Chez le Raffrayi, la perforation, profonde, est plus ouverte ; le bord externe, moins exactement arqué, offre en dedans, par suite de l'épaississement péristomal, un renflement très prononcé, pour ainsi dire subtuberculeux vers les deux tiers supérieurs, renflement qu'on ne remarque point chez le fontana, qui possède un péristome aigu, mince, fort peu patulescent ; le dernier tour, nettement ascendant vers l'insertion, est subanguleux, comme contracté à la base ; ce tour, de plus, est orné, en avant de la frange du bord, d'un bourrelet anté-péristomal saillant, qui n'existe pas chez le fontana ; enfin, sur les deux palatales, l'inférieure (et non la supérieure) donne lieu au scrobicule externe.

Ces différences suffisent pour motiver la distinction de la fontana du Cap avec sa congénère d'Abyssinie, à laquelle j'attribue le nom de M. A. Raffray.

Le Dr Jickeli a donné, sous l'appellation de fontana (pl. V, fig. 11 seulement), une assez bonne représentation de ce Pupilla.

Cette espèce, qui rappelle, par sa forme et par sa physionomie générale, notre bigranata d'Europe, a été trouvée au col (4024 mètres) de l'Abouna Yousef, dans le Lasta. M. le Dr Jickeli l'a signalée de l'Hamacen près du village d'Asmara (7200 p.), sur les bords du Toquor, près de Mekerka, enfin des monts Enjelal (7995 p.)

PUPILLA GLOBULOSA.

Pupa fontana, var. globulosa, Jickeli, Moll. N. O. Afr., p. 121, pl. V, fig. 11', 1874.

Cette coquille, fort bien représentée (fig. 11') dans l'ouvrage de Jickeli, est très distincte de la précédente.

C'est une petite espèce, moitié moindre que le Raffrayi,
globuleuse, ressemblant à une petite boule (le Raffrayi est cylindrique), à cinq tours et demi (au lieu de 7) plus convexes, et séparés par une suture très profonde. Le sommet est très obtus-arrondi ; le test, plus transparent, plus brillant, d’une teinte plus pâle, est complètement lisse, même sous le foyer d’une forte loupe ; la perforation ressemble à une fente allongée avec un trou central très exigu ; le dernier tour est moins anguleux en dessous ; le péristome mince, à peine épaissi, est fort peu réfléchi ; l’ouverture très peu haute est sémisphérique ; le bourrelet antépéristomal est fort peu prononcé ; enfin l’épaississement subtuberculeux qui caractérise le bord externe du Raffrayi vers ses deux tiers supérieurs, fait défaut chez ce Pupilla.

VERTIGO.

VERTIGO BISULCATA.

Cette coquille microscopique, signalée par Jickeli de la montagne Rora-beit-andu et des environs de Keren, dans l’Hamacen, a été recueillie par M. A. Raffray au col (4024 m.) de l’Abouna Yousef, dans le Lasta.

CLAUSILIDÆ.

Je crois qu’il convient de séparer des Helicidae toute la série des genres possédant un clausilium, comme les :

- Clausilia Draparnaud, 1805,
- Garnieria Bourguignat, 1877 (1);
- Nenia H. et A. Adams, 1855;

J.-R. BOURGUIGNAT.

Milne-Edwardsia Bourguignat, 1877 (1); Megaspira Lea, 1834 et 1838, etc.

Ces genres, en effet, sont, pour ainsi dire, pour les Helicidæ, ce que sont les Mollusques operculés à l'égard des inoperculés.

CLAUSILIA.

CLAUSILIA SENNAARICA.

L'échantillon, recueilli par M. A. Raffray, en tout semblable au type du Sennaar, en diffère seulement par une taille plus grêle; il a été trouvé sur l'Abouna Yousef, à une altitude de 4024 mètres.

ENNEIDÆ.

Si les animaux des Enneidæ se rapprochent de ceux des Testacellidæ ou des Streptaxidæ par le manque de mâchoire, on ne peut nier, d'un autre côté, que leurs coquilles n'ont aucune ressemblance avec celles de ces familles. Leurs coquilles sont même si dissemblables, que leur rapprochement constitue un fait anormal et antiméthodique.

D'autre part, si l'on ne peut laisser les espèces ennéennes parmi les Helicidæ, puisque celles-ci sont pourvues d'une mâchoire, on doit néanmoins considérer qu'au point de vue de l'ensemble de leurs signes distinctifs, leurs coquilles sont bien plus voisines des Bulimes et des Pupas, que des Testacelles ou des Streptaxis.

C'est pour cette raison que j'établis cette famille pour la série entière des formes ennéennes, classées jusqu'à ce jour,

ARTICLE N° 2.
soit parmi les *Helicidæ* (1), soit parmi les *Testacellidæ* (2) ou les *Streptaxidæ* (3), et que je la place dans le voisinage de celle des Hélices.

ENNEA.

Ce genre, établi en 1855 par les frères Adams, a pour type les *Pupa bicolor, Pirriei, Ceylanica*, etc.

Pfeiffer, en adoptant ce genre, le divise en cinq séries d'espèces : 1° *edentulina*, 2° *uniplicaria*, 3° *anneastrum*, 4° *gullela*, 5° *Huttonella*. Cet auteur range, dans cette cinquième et dernière série, les *Pupa* que les créateurs citent comme les types du genre, et englobe, dans ses quatre premières, une suite d'espèces qu'il présente comme les formes types des *Ennea*; il est impossible de faire mieux pour dénaturer le caractère d'une coupe générique. Aussi, Albers (4), trompé par Pfeiffer, adopte le genre pour les formes ventrues-ovales des quatre premières séries, et rejette les vraies *Ennea* dans la seconde section du genre *Gonospira* de Swaison. M. Morelet (5), de son côté, également induit en erreur, adopte aussi ce genre pour les espèces ventrues-ovales, et n'admet pas le *Pupa bicolor*, juste l'espèce typo-générique des frères Adams.

Ces années dernières, les auteurs ont ajouté aux cinq divisions de Pfeiffer, quatre autres (6), qui portent à neuf les coupes sous-génériques des *Enneas*.

(2) Jickeli (Moll. N. O. Afr., 1874, p. 29) les classe dans celles des *Testacellidæ*.

(4) Die Heliceen, p. 301, 2e édit., 1860.

(5) Séries conchyl., 2e livr., 1860, p. 73.

(6) Elma, d'Henri Adams, 1866; — Passamaella, de Pfeiffer, 1877; — Ptychotrema, de Morch, 1852, et Diaphera, d'Albers, 1850.
J.-R. BOURGUIGNAT.

Ce genre paraît spécial au continent africain, au sud de l'Asie et à la plupart des îles de l'océan Indien.

En Abyssinie, les deux *Ennea*, qui me sont connues, les *denticulata* et *Raffrayi*, appartiennent à la série des *Huttonella*, série qui correspond exactement au genre *Ennea*, tel qu'il avait été compris par les frères Adams.

ENNEA DENTICULATA.

Le type, découvert par M. Bèccari dans le pays des Bogos, possède une ouverture ornée de trois denticulations : une pariétale dentiforme près de l'insertion du bord externe, et deux palatales donnant naissance extérieurement à deux sillons scrobiculaires. La columelle offre seulement une dilatation anguleuse à sa partie interne supérieure.

La variété *Hamacenica*, qui vit sur les hauts plateaux de l'Hamacen, où elle a été recueillie par M. A. Raffray, diffère du type par sa columelle fortement denticulée et par ses tours au nombre de 8, au lieu de 10, comme l'indique M. Morelet pour le type.

La variété *Hildebrandti* Jickeli (*Moll. N. O. Afr.*, 1874, p. 30, pl. IV, f. 2) a sa columelle indifféremment uni ou bidentée ; seulement, elle est remarquable par son pli pariétal qui se réunit avec le point d'insertion du bord externe, et par sa coquille d'un ton brunâtre, au lieu d'être d'une nuance hyaline.

Toutes ces variétés, sans caractères suffisants qui motivent leur séparation de la *denticulata*, se trouvent répandues assez communément dans toute la partie orientale de l'Abyssinie, du pays des Bogos au lac Aschanghi.

ARTICLE N° 2.
Cette nouvelle espèce, très différente de la précédente, ainsi que de ses variétés, comme on peut s'en convaincre par la comparaison des descriptions et des figures que je viens de citer, offre les caractères suivants :

Testa rimata, elongata, exacte cylindrica, ad summum obtusa, vitraceo-hyalina, ac costulis pallidioribus, obliquis, inter se valde distantibus, ornata; — spira cylindrica, ad apicem perobtusum rotundata; — anfractibus 8 leviter convexiusculis, lente crescentibus, sutura impressa, in ultimis marginata papilloseraque, separatis; — ultimo exacte convexo, externe non sulcato nec scrobiculato, 1/3 altitudinis vix attingente, inferne rotundato, superne recto et ad insertionem labri breviter subito ascendente; — apertura obliqua, semisphere, unidentata : dens parietalis unica, in ventre penultimis sat insertionis proxima; — columella brevi, arcurata ac dilatata; — peristomate candido, incrassato, undique expanso praeter ad partem superiorem labri externi; — margine externo antorsum subarcuato; — marginibus callo sat valido junctis. — Alt. 6; diam. 3 mill.

Coquille allongée, exactement cylindrique, arrondie en dessus, et pourvue d'une petite fente omnilcrale. L'est vitrâcé, d'une teinte hyaline, sillonné par de petites costulations obliques, très distantes les unes des autres, et se distinguant par une nuance plus pâle. Spire cylindrique, à sommet très obtus. Huit tours à peine convexes, presque plans, à croissance lente, et séparés par une suture accentuée, qui devient, sur les derniers, marginée et papillisère. Dernier tour, atteignant à peine le tiers de la hauteur, exactement convexe, sans sillons ni scrobicules externes, arrondi à la base et présentant supérieurement une direction rectiligne, qui devient subitement ascendante à l'insertion du bord externe. Ouverture oblique, semisphérique, munie d'une seule dent pariétale

Cette espèce a été trouvée sur les hauts plateaux de l’Anderta, aux environs d’Antalo-Belessa.

ACHATINIDÆ.

Je comprends dans cette famille les coupes génériques suivantes : Achatina (Lamarck), Pseudochatina (All’ers), Perideris (Shuttleworth), Carelia (Adams), Pachnodus (Albers), Limicolaria (Schumacher), etc., et Opeas (Albers), bien que cette dernière ait été classée par les auteurs parmi les Stenogyridœ. L’Opeas gracilis, signalé en Abyssinie, est, en effet, si voisin, soustous les rapports, des Limicolaria, que je ne puis ranger cette espèce que dans le voisinage de ce genre. Les Opeas, je crois, devront être modifiés du tout au tout, attendu que les auteurs ont réuni sous ce nom plusieurs formes fort dissemblables au point de vue générique.

M. A. Raffray n’a rapporté qu’une espèce d’Achatinidæ appartenant au genre Pachnodus.

PACHNODUS.

Les espèces de ce genre sont des coquilles achatiniformes, à columelle non tronquée, droite, acuminée à la base, très dilatée supérieurement et recouvrant plus ou moins la perforation omnilcalque. Le test, inférieurement ventru, est assez brièvement conique. La coloration, généralement d’une belle teinte jaune ou rosacée, tantôt unicolore, tantôt ceinte de zones foncées, est parfois mouchetée de zébrures. Le péristome est toujours mince et tranchant.

Les principales espèces de cette coupe qui, sans avoir de caractères bien tranchés, a néanmoins un cachet tout parti-
culier, qui ne permet pas de la confondre soit avec les *Achatina* ou les *Perideris*, soit avec les *Limicolaria*, sont :

Etc., etc.

Le *Pachnodus*, découvert par M. A. Raffray, sur le mont Zefoul au sud-est de cette région, est une forme qui, bien que distincte, rappelle celles de Mozambique et du Zanguebar. Cette forme montre que l’influence malacologique de ces pays s’est fait sentir jusqu’à cette montagne du Zefoul, une des premières du massif abyssin, dans la direction du Zanguebar.

PACHNODUS ROCHEBRUNIANUS (fig. 81).

Testa angustissime perforata (perforatio fere omnino tecta) ventroso-conica, subdiaphana, nitida, uniformiter flavida, ac in ultimo, punctulis rubris in lineolis spiralibus dispositis, rare maculata; subtilissime striatula; — spira conica; apice obtusiusculo, nigrescente; — anfractibus 6-7 convexiusculis.
regulariter crescentibus, sutura impressa separatis; — ultimo magno, ventroso, rotundato-oblongo, dimidiam altitudinis æquante, superne recto; — apertura obliqua, oblonga, inferne sat dilatata, superne angulata; — peristomate recto, peracuto; — columella recta, inferne tenui, acuminata, superne breviter supra perforationem triangulatim dilatata; — marginibus approximatis, callo diaphano junctis. — Alt. 20; diam. 14 mill.

Coquille ventru-conique, pourvue d'une très étroite perforation presque entièrement recouverte. Test très finement strié, brillant, un peu transparent, d'une belle couleur jaune-paille mouchetée de quelques points rougeâtres disposés en séries spirales. Spire conique, à sommet noirâtre, légèrement obtus. Six à sept tours peu convexes, à croissance régulière, séparés par une suture prononcée. Dernier tour grand, ventru, arrondi tout en étant un peu oblong, égalant la moitié de la hauteur, et présentant supérieurement une direction rectiligne. Ouverture oblique, oblongue, légèrement dilatée à la base, angulée à son sommet, et entourée par un péristome droit très aigu. Columelle rectiligne, très délicate et acuminée inférieurement, enfin, offrant à sa partie supérieure une petite dilatation triangulaire qui recouvre en partie la perforation. Bords rapprochés, réunis par une callosité transparente.

Ce Pachnodus, que je dédie au naturaliste Tremaud de Rochebrune, est le premier constaté en Abyssinie.

STENOGYRIDÆ.

SUBULINA.

Si l'on excepte les Subulina gracilis et Isseli de Jickeli, qui n'appartiennent pas à ce genre, parce qu'elles possèdent une columelle non tronquée, les vraies Subulines abyssiniennes, signalées par les auteurs, sont encore au nombre de dix :

Cyanostoma, vernicosa, Antinorii, variabilis, Lhotellerii, Jickeli, suaveolans, angustata, angulata et Munzingeri que le ARTICLE N° 2.
docteur Jickeli a pris à tort pour une *Acicula* et qui, en réalité, n’est qu’une Subuline.

Je n’ai pas mentionné les *Achatina sennaariensis* et *Durnaudii* de Pfeiffer, parce que je ne sache pas qu’elles aient été constatées d’une façon certaine en Abyssinie.

Sur ces dix espèces, M. A. Raffray, sans compter deux nouvelles formes, en a recueilli quatre : les *variabilis*, *Lhotel-lerii*, *suaveolans* et Munzingeri.

SUBULINA PERRIERIANA (fig. 64).

Testa imperforata, elongato-subulata, solidula, subopacula, parum nitente, corneo-subviridescente, sat valide striatula (supremis tribus pallidioribus lævigatisque exceptis); — spira elongata, subacuminata, ad summum obtusa; apice obtuso (anfractus embryonalis minutissimus); — anfractibus 9 sat convexis, lente crescentibus, sutura impressa separatis; — ultimo mediocri rotundato, 1/4 altitudinis æquante, superne lente subdescendente; — apertura obliqua, subovato-rotundata, intus lactescence; — peristomate recto, acuto, atro-marginato; — columella brevi, robusta, valide arcuata ac inferne abrupte truncata; — marginibus callo nitido junctis.

— Alt. 26. diam. 7, alt. ap. 6 1/2 mill.

Coquille imperforée, allongée, cylindrique-atténuée, à test assez solide, subopaque, peu brillant, d’un corné légèrement verdâtre et sillonné par des stries assez fortes, à l’exception des trois premiers tours qui sont lisses et d’une teinte plus pâle. Spire allongée faiblement acuminée, à sommet obtus sauf le tour embryonnaire qui est très petit. Neuf tours relativement convexes, à croissance lente, séparés par une suture accentuée. Dernier tour médiocre, arrondi, égalant le quart de la hauteur, offrant à la partie supérieure une direction rectiligne. Ouverture oblique, subovale-arrondie, d’une teinte lactescente à l’intérieur, et entourée d’un péristome droit, aigu, bordé d’une frange bien noir. Columelle courte, robuste, très
arquée et nettement tronquée à sa base. Bords marginaux réunis par une callosité brillante.

Cette espèce, à laquelle j'attribue le nom de notre ami le professeur E. Perrier du Muséum, est remarquable par ses tours bombés; par son test peu brillant, bien strié, à l'exception des trois supérieurs; par son ouverture petite, presque ronde à bord columellaire très arqué, et par son péristome cerclé d'une belle frange noire.

Cette Subuline provient des hauts plateaux de l'Anderta.

SUBULINA VARIABILIS.

Hauts plateaux de l’Hamacen, entre 2000 et 2500 mètres d’altitude; assez abondante.

SUBULINA LHOTELLERII.

Environ d’Adowa, et montagne de l’Abouna Yousef, dans le Lasta.

SUBULINA SUAVEOLANS.

Montagne de l’Abouna Yousef, où cette espèce paraît peu commune.

SUBULINA MUNZINGERI (fig. 65-67).

Cette petite coquille, qui est bien un Subulina, et que Jickeli a prise, à cause de sa taille grêle, pour une *Acicula (melius Cecilianella)*, vit sur l’Abouna Yousef, à une altitude de 4000 mètres.
Testa imperforata, gracillima, parum elongata, attenuata, fragili, nitida, diaphana, uniformiter cornea ac minutissimis punctulis albescentibus, irregulariter sparsi, sepe maculata, laevigata, aut sub validissimo lente substriatula; — spira elongata, parum attenuata, ad summum obtusiuscula; — anfractibus 7-8 relative bene convexis, regulariter crescentibus, sutura profunda separatis; — ultimo rotundato-oblongo, vix 1/4 altitudinis aequante, superne lente descendente; — apertura obliqua, oblonga; — peristomate recto, acuto; — columella brevi, leviter arcuata, inferne sat abrupte truncatula; — marginibus callo diaphano junctis. — Alt. 8-9; diam. 2; alt. ap. 2 mill.

La Mabilliana, que je dédie au savant malacologue Mabille de Paris, se distingue de la Munzingeri par sa forme moins grêle, moins acuminée; par sa coloration d’un corné uniforme, sur laquelle on remarque quelques rares maculations blanchâtres; par ses tours moins nombreux, bien convexes, séparés par une suture profonde, dont l’inclinaison descendante est moins accentuée; par son ouverture moins allongée et plus large; par sa columelle mieux arquée et plus franchement tronquée à la base; par la croissance régulière de ses
tours supérieurs qui ne ressemble point à celle de la *Munzingeri* (voy. fig. 65).

Cette espèce a été recueillie à une altitude de 4000 mètres sur la haute montagne de l'Abouna Yousef, dans le Lasta.

§ 2. — Pulmobranchiata.

ANCYLIIDÆ.

ANCYLUS.

On trouve, chez les auteurs, quatre espèces d'Ancyles, qui, en somme, finissent par se réduire à deux, ainsi:

Blandford (*Géol. and. zool. Abyss.*, p. 473, 1870) mentionne :

1° Un *Ancylus fluviatilis* d’un ruisseau près de Guna-Guna, dans le Tigré ;

2° Un autre *Ancylus* (sans nom) d’une rivière près de Mai Wahiz, également dans le Tigré. Cette espèce, au dire de l’auteur anglais, rappellerait assez la forme du verruca de l’Inde.

Jickeli, de son côté (*Moll. N. O. Afr.*, 1874), signale :

1° Un *Ancylus* nouveau de l’Hamacen, sous le nom de *compressus* ;

2° Une autre nouvelle espèce, sous l’appellation d’*Abyssinicu*s ;

3° Enfin, ce même *Ancylus* (innommé) de Blandford.

Sir G. Nevill, dans son *Hand list Moll. ind. mus.*, p. 248, 1878 rectifie la synonymie de l’*Ancylus fluviatilis* de Guna-Guna, en reconnaissant, en cette espèce, l’*Abyssinicu*s de Jickeli.

En résumé, en exceptant cet Ancyle *inconnu* de Mai Wahiz, on est en présence de deux formes spéciales et bien déterminées, l’*Abyssinicu*s et le *compressus*, auquel j’attribue le nouveau nom d’*Hamacenicu*s (1).

(1) On ne peut conserver le nom de *compressus*, parce que cette appellation a déjà été employée deux fois pour deux Ancyles différents : 1° Pour une va-
De ces deux espèces, M. Raffray n'a recueilli que l':

ANCYLUS ABYSSINICUS.

Cette espèce, signalée dans l'Hamacen entre Genda et Asmara, et du Toquor près Mekerka, ainsi que de Guna-Guna dans le Tigré, a été encore recueillie sur les bords de l'Anseba près d'Abrechoho.

LIMNÆIDÆ.

Je connais de l'Abyssinie huit espèces de Limnées, bien que M. Raffray n'en ai découvert que trois (_Raffrayi, aethiopica et truncata_); les cinq autres, que je possède depuis longtemps, proviennent, l'une (_Africana_) du célèbre paléontologiste et ami, Alcide d'Orbigny, qui la tenait de Rupell; les autres (_Caillaudi, alexandrina, acroxa et exserta_) de M. Edouard Verreaux, qui les avait reçues vraisemblablement de MM. Caillaud et Galinier.

Il est nécessaire, je crois, pour l'intelligence des Limnées abyssiniennes, que je présente un aperçu des espèces publiées ou mentionnées en Afrique. Je ne parlerai pas, comme de juste, de celles de Madagascar, de l'Algérie, de la Tunisie et du Maroc, parce qu'elles n'appartiennent pas à la faune de ce continent.

Ehrenberg, le premier, en 1831 (_Symbolæ physiciæ_) a fait connaître, d'une manière fort imparfaite, sous le nom de

(1) Non _Ancyclus fluviatilis_ des auteurs européens.
L. Pharaonum, une très petite coquille (haut. 4 1/2, diam. 3 mill.), recueillie sur des plantes aquatiques, près de Damiette, en Égypte. Cette espèce, d'après ses caractères, doit être une Succinée.

Kuster, en 1862, a reproduit, d'une façon peu exacte, cette natalensis (*Limnea*, 2é édit. Chemnitz, p. 31, pl. VI, f. 1-3), et a établi une autre espèce, du fleuve Umlaa, dans le sud de l'Afrique, sous le nom d'*Umlaasiannus* (p. 32, pl. VI, f. 4-5). Cette Limnée n'est qu'une variante de la variété minuta de la truncatula, qui, comme on le sait, est une espèce des plus cosmopolites.

Le Dr Martens, en 1866 (*Malak. Blatt.*, p. 101, pl. III, f. 8-9), a créé une forme nouvelle, de la fontaine (aïn) de Zaba, près Zasaga dans l'Abyssinie, sous l'appellation de Natalensis, var. exserta. Cette forme, qui est loin d'être une variété de la Natalensis, mérite d'être conservée.

En 1868, dans les Mollusques (des royaumes d'Angola et du Benguella) du voyage du Dr F. Welwitsch, M. Morelet a donné les descriptions et les figures de quatre Limnées nouvelles : Bocaréana, Benguellensis, sordulenta et orophila. Ces espèces sont suffisamment caractérisées.

En 1870, M. Blandford (*Observ. geol. and zool. Abyss.*, p. 472) a signalé, naturellement sans description, sous la dénomination de Natalensis, deux variétés abyssiniennes, l'une de Guna-Guna dans le Tigré, l'autre, de la source de l'Haddas, près de Takonda. Je présume, quoique je n'ai aucune certitude à cet égard, que ces variétés pourraient bien se rapporter à l'africana de Rupell. Si j'exprime cette opinion, c'est que je ne vois, parmi les Limnées de ce pays connues jusqu'à ce jour,

(1) Voy. le catalogue des Limnées européennes dans l'*Histoire malacologique du lac Balaton*, par le Dr G. Servain, 1 vol. in-8, 1881.
que l'\textit{africana} qui pourrait avoir, de très loin, il est vrai, quelques traits de ressemblance avec la \textit{natalensis}.

Le Dr Jickeli, en 1874, dans son grand ouvrage sur les Mollusques du bassin du Nil (\textit{Moll. N. O. Afr.}, p. 190-194), a donné les descriptions des espèces suivantes :

1° \textit{L. pharaonum} d'Ehrenberg, qui, à mon sens, n'est pas une Limnée ;

2° \textit{L. truncatula}, typique, sous le nom de \textit{peregra} ;

3° D'une variété \textit{minuta} de cette même espèce, sous l'appellation de \textit{truncatula} ;

4° Enfin, sous la dénomination de \textit{natalensis} : d'abord de la variété de Guna-Guna mentionnée par Blandford ; puis de l'\textit{exserta} de Martens ; ensuite, d'une troisième forme du Toquor près de Mekerka, sous le nom d'\textit{orophila} de Morelet. La première variété, celle de Guna-Guna, comme je l'ai dit plus haut, pourrait bien être une \textit{africana} ; la seconde, l'\textit{exserta}, est une espèce spéciale d'un groupe différent ; quant à la troisième, du Toquor, qui est loin d'être l'\textit{orophila}, j'avoue qu'elle m'est inconnue, parce que je ne puis trouver, parmi les Limnées africaines, une espèce dont les caractères puissent exactement cadrer avec ceux indiqués par le docteur allemand.

Enfin, si je mentionne les trois Limnées du pays des \textit{Gomalis} (\textit{Perrieri, Poirieri et Revoili}), que j'ai fait connaître en 1881 (1), on aura, je pense, la liste complète des Limnées décrites ou signalées en Afrique.

\footnote{Mollusques terrestres et fluviatiles recueillis en Afrique, dans le pays des \textit{Gomalis} Medjourtin, et, 1882, \textit{Mollusques de la mission Revoil aux pays \textit{Gomalis}}, 1 vol. in 8 avec 6 pl. Je crois devoir prévenir que le dessinateur a mal rendu les signes distinctifs des \textit{L. Perrieri, Poirieri Revoili}, que j'ai fait représenter (pl. IV, fig. 77 à 82), dans les Mollusques de la mission Revoil.
Voici maintenant, d'après l'état de mes connaissances, le tableau des espèces de ce genre.

Stagnaliana.

Exsertiana.
- *Revoili*, — —

Biformiana.
- *acroxa*, — Abyssinie, Égypte.
- *Camoroni*, — Bagamoio (Zanzibar).
- *Kyngunic*, — —
- *Letourneuxi*, — Égypte.
- *zanzibarica*, — Bagamoio (Zanzibar).

Aericulariana.
- *expanasilabris*, — Égypte.
- *Forskali*, Letourneux. —

Limosiana.
- *Laurenti*, Bourguignat. Égypte.
- *alexandrina*, Bourguignat. Tout le bassin du Nil.
- *sordulenta*, — Angola.
- *aegyptica*, Bourguignat. Égypte.
- *Cleopatra*, Letourneux. —

Ampullaceana.
- *amygdalina*, Bourguignat. Égypte.

Raffrayana.
- *africana*, Ruppell. —

au pays comalis (1883). J'avais revu et corrigé toutes les autres figures (qui sont exactes) des quatre planches de Mollusques comaliens, il ne restait plus à l'artiste que ces trois Limnées à lithographier, lorsque je fus forcée de m'absenter pendant un assez long temps. A mon retour les planches étaient tirées et je ne pus faire faire aucune retouche. Je trouverai plus tard l'occasion de faire reproduire à nouveau, plus exactement, ces Limnées comaliennes si distinctes l'une de l'autre, et qui, sur les planches, que je n'ai pu corriger, se distinguent à peine entre elles.

Article n° 2.
Bouchardiana.

Wahliana.
— astilba, Bourguignat. Égypte.

Palustrisiana.
— Lessepsiana, Bourguignat. Égypte.

Truncatuliana.
— truncatula, Goupil (umlaasiana, Küster). Depuis l'Égypte jusqu'au Cap, dans presque tous les cours d'eau de l'Afrique orientale.

Sur ces vingt-neuf Limnées, les huit suivantes ont été constatées en Abyssinie.

LIMNÆA CAILLAUDI (fig. 100-101).

Cette espèce, que je dédie au célèbre voyageur M. F. Caillaud de (Nantes) est une forme du groupe des *Stagnalis*, et voisine, par sa spire écourtée, de la série des *Doriana, bodamica* et *Helvetica* de Suisse et de Sicile.

Testa obiecte rimata, ovato-ventrosa, sat tenui, subdianphana, cornea, subtilissime striatula (striae in ultimo validiores); — spira brevi, sat contorta, breviter acuminata, ad summum acuta ac opaca; — anfractibus 4 1/2-5 rapide crescentibus, quorum: suprerni exigui, convexi; medianus declivisubplanulatus, inferne tumidulus; ultimus maximus, amplus, convexus, modò ad initium superne subsectiformi-planulatus; — sutura inter supremos et ad ultimum impressa, in medianis, sublineari; — ultimo 2/3 altitudinis superante, superne ad insertionem labri leviter ascendente; — apertura parum obliqua, oblonga; — peristomate recto, acuto; — marginexerno antrorum regulariter arcuato; margine collumellari contorto, subplicato, inferne leviter arcuato; marginibus sat valido callo, usque ad columnelae medianam partem descendentewacnodul. — Alt. 28; diam. 15; alt. ap. 19 millim.

Coquille ventrue-ovalaire, pourvue d'une fente ombralcal entièrement recouverte par la callosité, qui s'étend jusqu'à la
partie moyenne du bord columellaire. Test assez mince, médiocrement transparent, d'une teinte cornée, très finement striolée, sauf sur le dernier tour où les stries deviennent plus fortes. Spire courte, sensiblement torse, brièvement acuminée, et terminée par un sommet aigu et opaque. Tours, au nombre de 4 1/2 à 5, à croissance rapide. Les supérieurs, exigus, sont convexes ; le médian, inférieurement renflé, offre supérieurement une surface inclinée presque plane ; le dernier, très grand, bien développé, dépassant les 2/3 de la longueur, convexe vers l'ouverture, présente, à son origine, un mode de surface qui rappelle celui du tour médian. Suture descen-
dante, bien prononcée entre le dernier et les supérieurs, presque superficielle au tour médian. Ouverture légèrement oblique, oblongue, entourée d'un péristome droit et aigu. Bord externe régulièrement arqué en avant. Bord columellaire torse, un peu plissé et arqué vers sa partie inférieure. Callo-
sité pariétale prononcée.

La Caillaudi vit dans le lac Dembea, et vraisemblablement dans tout le cours du Nil bleu et du grand Nil, puisqu'elle a été recueillie sur les bords de l'île de Choubrah près du Caire, par le conseiller Letourneux.

Limnea Exserta.

L' *exserta*, qui n'a point de rapport au point de vue des caractères avec la *Natalensis*, a été trouvée dans la fontaine *(Äin)* de Zaba, près Zasaga (Heuglin), ainsi que dans le Nil Bleu (Galinier). Comme la précédente, elle a dû également se propager dans tout le Nil, puisqu'elle vit près du Caire (Letourneux).

Limnea Acroxa (fig. 94).

Cette Limnée est des plus caractérisées. Elle est remarquable par son dernier tour bien renflé, surmonté d'une spire aiguë-
étranglement, excésivement fluette, et tout à fait en disproportion de grosseur. Chez cette espèce, les tours s'accroissent chétivement et régulièrement jusqu'à moitié de l'avant-dernier, où ils prennent alors presque subitement un très grand développement. Cette spire, par suite de ce développement disproportionné, paraît si délicate, qu'elle semble anormale.

Testa oblecte rimata, ovato-ventosa, superne gracillima, sat tenui, subpellucida, cornea vel succinea, in prioribus subtiliter striatula, in ultimo validius striata ac passim submallevata; — spira gracillima, producta, acuminata; — anfracribus 4-5 convexis, quorum : supræm exigui, regulariter lenteque crescentes; ultimus fere subito maximus, convexotumidus; — sutura profunda; — ultimo ventroso, dimidiam altitudinis æquante, superne lente descendente; — apertura vix obliqua, ovata; peristomate recto, acuto; — margine externo recte subrecedente, antorsum non arcuato; margine columellari sat valido, leviter subarcuato ac subcontorto; marginibus callo, supra columnam descendente, junctis. — alt. 20, diam. 9. alt. apert. 10 millim.

Coquille ovale-ventrue, surmontée d'une spire très fluette et pourvue d'une fente ombilicale recouverte. Test assez mince, subtransparent, corné ou d'une teinte succinée, très délicatement strié sur les tours supérieurs, plus fortement strié sur le dernier, où l'on remarque, en outre, de faibles méplats irrégulièrement disposés. Spire excessivement grêle, élancée et acuminée. 4 à 5 tours convexes, dont les supérieurs s'accroissent avec lenteur et régularité, tandis que le dernier prend subitement un très fort développement. Suture profonde. Dernier tour ventru, convexe, égalant la moitié de la longueur, et très lentement descendant à sa partie supérieure. Ouverture à peine oblique, ovale, entourée d'un peristome droit et aigu. Bord externe, non arqué en avant, mais obliquement rectiligne. Bord columellaire assez robuste, à peine arqué et très faiblement tors. Bords marginaux réunis par une callosité, qui s'étend jusque sur la columelle.
J.-R. BOURGUIGNAT.

Le Nil Bleu au-dessous du lac Dembea (Verreaux). Cette Limnée vit également en Égypte, où elle a été trouvée par le conseiller Letourneux, dans l’étang de Nefich près Ismaïlia.

LIMN.EA ALEXANDRINA (fig. 95-96).

Testa rimata (rima fere omnino tecta), ovato-tumida, sattenui, subpellucida, cornea, subtiliter striatula (striæ in ultimo paulatim validiores et ad aperturam eleganter costulato-lamellosæ); — spira parum producta, acuminata, sicut tectiformi-conica; — anfractibus 4-5 celerrime crescentibus, quorum supræmï vix convexiuseuli, fere subplanulati; ultimi convexi; — sutura inter superiores vix impressa, ad ultimum impressiore; — ultimo magno, ampio, oblongo-convexo, 2/3 altitudinis superante, superne lente descendente; — apertura leviter obliqua, oblonga; — peristomate recto, acuto;— margine externo antrorsum recte recedente; margine columellari rectiuscule, superne vix contorto; marginibus tenui callo junetis. — Alt. 25; diam. 14; alt. ap. 18 millim.

Coquille renflée-ovalaire, pourvue d’une fente omibilcale presque entièrement recouverte. Test assez fragile, subtransparent, corné, orné sur les tours supérieurs de très fines striations, qui deviennent sur le dernier de plus en plus fortes, et qui finissent, vers l’ouverture, par prendre l’apparence de côtes lamellauses. Spire peu élancée, même assez courte, acuminée et comme conique-tectiforme. 4 à 5 tours, à croissance rapide, dont les supérieurs, à peine renflés, sont presque plans, tandis que les derniers sont convexes. Suture peu prononcée, sauf entre les deux tours inférieurs. Dernier tour grand, bien développé, d’une forme oblongue-convexe, dépassant les deux tiers de la longueur et offrant supérieurement une direction descendante fort lente. Ouverture faiblement oblique, oblongue, entourée par un péristome droit et aigu. Bord externe descendant en avant d’une façon *recto-rétrocedente*. Bord columellaire presque droit, à peine tors à sa
partie supérieure. Bords marginaux réunis par une callosité délicate.

Cette grande et belle espèce paraît abondante dans le Nil Bleu (Verreaux, Caillaud), d'où elle s'est répandue jusque dans la Basse-Egypte. Elle y a été trouvée, en effet, assez communément dans le Nil, près de l'île de Choubbrah, non loin du Caire (Innes), à Gabari, à Haguertel et Naouatié, près de Ramlé et dans tous les canaux d'Alexandrie (Letourneux), où on y rencontre une variété gracilis à taille moitié plus petite que le type d'Abyssinie.

Limnea raffayi (fig. 97-98).

Testa non rimata (rima tecta), oblonga, subampullacea, solidula, subopacula, cornea, argutissime striatula ac sub lente subtilissime decussata; — spira sat brevi, conico-acuminata; apice exiguo; — anfractibus 4, celerrime crescentibus (quorum, embryonalis, minutissimus; secundus exiguus convexus; penultimus amplior, et ultimus permaximus, oblongus, in medio subplanulatus ac irregulariter convexus), sutura impressula separatis; — ultimo 2/3 altitudinis æquante; — apertura vix obliqua, oblonga, leviter angusta; peristomate recto, acuto; — margine externe antrorsum valde arcuato; margine columellari superne subcanaliculato, subcontorto, leviter arcuato; marginibus callo usque ad superam partem columellæ descendente ac rimam tegente, junctis. — Alt. 27 diam.; 13; alt. ap. 19 millim.

Coquille oblongue, sensiblement gonflée, pourvue d'une fente omnilcale complètement recouverte et fermée. Test assez solide, peu transparent, corné, très finement striolé et paraissant, sous le foyer d'une forte loupe, très délicatement décussé par de petites linéoles spirales. Spire assez courte, conique-acuminée, à sommet pointu. 4 tours à croissance très rapide, dont l'embryonnaire excessivement petit, le second exigu et convexe, le troisième relativement plus développé, et le dernier très grand, de forme oblongue, un peu méplan à sa partie.

Chez cette Limnée, la convexité du dernier tour n’est pas régulière; on remarque, sur la partie moyenne, un méplat assez prononcé, méplat qui rend la partie inférieure un tant soit peu plus bombée.

LIMN. EA ETHIOPICA (fig. 92-93).

Cette espèce a un aspect tout particulier; elle ressemble, par son mode de croissance légèrement tors et oblique, à une oublie (oblea). Le dernier tour, méplan-tectiforme dans sa partie supérieure, est sensiblement renflé vers ses deux tiers inférieurs.

Testa rimata (rima angustissima ac profunda), suboblongo-elongata, subcontorta, fragili, pellucida, cornea, nitida, fere lävigata aut substriatula; — spira brevi, tectiformi-conica; — anfractibus 4, celeriter contorto-crescentibus, declivi-subplanulatis, sutura impressula, perdescendente separatis; — ultimo magno, 2/3 altitudinis superante; — apertura obliqua, oblonga; — peristomate recto, acuto; — margine externo ad superiorem partem concaviusculo et deinde antrorsum arcuato; margine columellari dilatato, reflexo, superne contorto, inferne arcuato; — callo inconspicuo. — Alt. 22; diam. 40; alt. ap. 14 millim.

ARTICLE N° 2.

Cette Limnée a été recueillie, avec la précédente, dans la vallée de l'Anséba.

LIMNÆA AFRICANA (fig. 99).

Limnea africana, Ruppell.

Cette espèce, par sa forme générale, rappelle la *Raffrayi*, seulement en plus petit et en plus écourté. Les deux tours supérieurs sont plus exigus; les deux inférieurs sont plus gros et plus renflés; la spire, écourtée, est plus brièvement conique; la columelle, plus torse, sensiblement canaliculée, paraît plus saillante; enfim la callosité pariétale, un peu plus développée, descend plus bas que celle de la *Raffrayi*.

Testa subrimata (rima fere omnino tecta), tumido-ovata, sat tenui, subpellucida, pallide cornea, argute striatula (striæ in ultimo validiores); — spira breviter tectiformi-conica; — anfractibus 4 perceleriter crescentibus (quorum supremi minutissimi), sutura impressula separatis; — ultimo maximo, fere 3/4 altitudinis atingente, ad partem superiorem declivi-subplanulato, inferne tumidiore; — apertura parum obliqua, oblonga; — peristomate recto, acuto; — margine externo
antrorsum medio-criter arcuato; margine columellari superne subcanalicutato, leviter contorto; — marginibus callo valido, fere usque ad columellae basin descendente, junctis. — Alt. 21, diam. 11; alt. ap. 15 millim.

Lac Dembea (Ruppell).

LIMNEA TRUNCATULA.

Cette espèce se compose, comme on le sait, de deux variétés principales, qui ne se distinguent guère, l'une de l'autre, que par le bord columellaire tantôt rectiligne jusqu'à la base de l'ouverture, ce qui rend celle-ci subtruncatulée (de là le nom de *truncatula*), tantôt légèrement arqué et se réunissant inférieurement, avec le bord inféro-apertural, par une courbe plus ou moins arrondie, ce qui donne à l'ouverture un développement un peu moins grand. Cette variété est connue sous le nom de *minuta* (1). Ces deux variétés constituent la *Limnea truncatula.*

ARTICLE N° 2.
Or, en Abyssinie, ces deux variétés se rencontrent comme en Europe.

A la première, truncatula, qui est le type, puisqu'elle a été décrite en 1774, il convient de rapporter :

La Linnaea peregra? (Jickeli, Moll. N. O. Afr., 1874, p. 193, pl. VII, fig. 9) du Toquor près de Mekerka; à la seconde, minuta, les synonymies suivantes :

Sans compter ces localités que je viens de mentionner, la truncatula a encore été trouvée aux environs d'Adowa et dans les ruisseaux de la chaîne du Zeboul, chez les Gallas Raïas.

PHYSA.

Les espèces de ce genre, mentionnées par les auteurs, sont les :

Physa (Isidora) sericina, de Jickeli;
Physa (Isidora) Shackoi, Jickeli;
Physa (Isidora) contorta, de Jickeli et de Blandford;
Physa tropica, de Blandford, teste Nevill;
Physa (Isidora) Forskali, de Jickeli;
Physa Fischeriana, de moi;

Enfin, une Physa (sans nom) signalée d'un ruisseau du plateau Wadela (9500 pieds). D'après Blandford, les échantillons de cette Physe sont petits, peut-être jeunes, et ressemblent comme forme à la fontinalis d'Europe. Ils ont néanmoins le test plus lisse, et un petit bourrelet intérieur au péristome. Cet

(1) La figure C, qui représente l'ouverture très grossie, est fautive en ce sens que la bouche est trop inclinée de droite à gauche. Cette bouche ne ressemble pas à celle de la figure A.
J.-R. BOURGUIGNAT.

auteur croit que c'est une variété allongée de la *contorta*. Quid?

En laissant de côté cette Phye *innommée*, et trop insuffisamment caractérisée, on reste en présence de six espèces, parmi lesquelles il convient de retrancher la *tropica* pour la placer en synonymie de la *Shackoi*.

M. A. Raffray a retrouvé trois de ces espèces (*sericina*, *contorta* et *Forskali*), plus une nouvelle, pour la faune de cette région, la :

PHYSA NATALICA.

Cette espèce, recueillie dans les cours d'eau du mont Zeboul et de la plaine des Gallas Raïas, sauf une taille un peu plus faible, est si semblable à celle de la terre de Natal, qu'il m'est impossible de l'en distinguer.

PHYSA SERICINA.

Ruisseaux du mont Zeboul.

PHYSA CONTORTA.

Bords du lac Aschanghi. — Le Dr Jickeli, sous le nom de *contorta*, a réuni des formes les plus dissemblables, qu'il est impossible d'admettre comme représentant cette espèce.

PHYSA FORSKALI.

Le Dr Jickeli (*Moll. N. O. Afr.*, 1874, p. 198) a également,}

ARTICLE N° 2.
comme pour l’espèce précédente, confondu, sous l’appellation de *Forskali*, des formes très différentes les unes des autres, formes qu’on ne peut admettre comme similaires de cette Physé.

Espèce abondante dans la région chaude du littoral, notamment à Ailet.

PLANORBIDÆ.

PLANORBIS.

Quatre espèces de Planorbes ont été signalées en Abyssinie :

1° Le *Planorbis Ruppelli*, de Dunker ;
2° Un *Planorbis natalensis*, de Krauss (?) ;
3° Le *Planorbis abyssinicus*, bonne espèce nouvelle ;
4° Une variété rapportée au *costulatus* de Krauss.

Or, lorsqu’on étudie toutes ces formes, on reconnaît :

1° Que le *Ruppelli* (Dunker) de Jickeli se compose de deux espèces différentes, dont l’une (fig. 17) est le *Ruppelli* véritable, tandis que l’autre (fig. 18) est une forme distincte, à laquelle il convient de rapporter le Planorbe que l’on a assimilé (avec un point de doute, il est vrai) au *natalensis* de Krauss : j’attribue à cette seconde forme le nom d’*Herbini* ;

2° Que la variété du soi-disant *costulatus* se compose également de deux formes des plus dissemblables, puisqu’à l’une (fig. 23), je donne le nom d’*œthiopicus*, et qu’à l’autre (fig. 22), loin de la considérer comme un Planorbe, je lui attribue celui de *Caillaudia angulata*.

En somme, il y aurait donc :

1° Le *Planorbis Ruppelli* (fig. 17) ;
2° Le *Planorbis Herbini* (fig. 18 de Jickeli) ;
3° Le *Planorbis abyssinicus* (fig. 21) ;
4° Le *Planorbis œthiopicus* (fig. 23 de Jickeli, sous le nom (pars) de *costulatus*) ;

Et 5° la *Caillaudia angulata* (fig. 22), — *Plan. costulatus* (altera pars) de Jickeli.
Si, enfin, à ces espèces, on ajoute l'Adowensis décrit par moi, en 1879, on aura cinq Planorbes (Ruppelli, Herbini, adowensis, abyssinicus et ethiopicus), plus une Caillaudia (l'angulata).

Bien que M. A. Raffray n'ait recueilli, de tous ces Planorbes, que l'Herbini, je crois cependant nécessaire, pour faire comprendre les caractères de cette espèce, de dire quelques mots sur les deux formes voisines, le Ruppelli et l'Adowensis.

PLANORBIS RUPPELLI.

« Testa opaca, dit Dunker, tenuiter striata, pallide cornea, subcinerea, supra umbilicata, inferne concava; anfractibus 4 ovatis modice crescentibus; apertura ovata, obliqua, etc. »

Cette espèce, à test opaque, finement strié, d'un corné pâle légèrement cendré, est ombiliquée en dessus et concave en dessous. Elle est, en outre, caractérisée par une ouverture oblique-ovale, et par quatre tours à croissance médiocre.

Chez ce Planorbe, les tours augmentent d'une façon régulière, en hauteur et en largeur, depuis le point embryonnaire jusqu'à l'ouverture. La concavité supérieure, moins profonde que l'inférieure, qui est en entonnoir, forme une légère cuvette, où aucun des tours ne vient faire une saillie anormale.

En somme, le caractère important du Ruppelli consiste en une croissance lente et bien régulière.

(1) Non Pl. Ruppelli, Kuster, 2e édit., Chemnitz. — Plan., p. 41, pl. V, fig. 16-12, — qui est un échantillon anormal.
Chez ce nouveau Planorbe, la croissance n'est pas lente et régulière.

En dessus, les deux premiers tours, très exigus, se trouvent profondément enfonceés et peu visibles, par suite de l'avant-dernier, qui, en prenant assez brusquement un fort développement, remonte presque au niveau du dernier. Ce dernier tour est relativement très ample, et tout à fait en disproportion avec les autres.

En dessous, par suite également du grand développement du dernier, la partie concave du centre est d'un bon tiers moins étendue que celle du Ruppelli; de plus, elle ne forme pas un entonnoir régulier.

L'Herbini diffère encore du Ruppelli par son ouverture moins oblique, moins transversalement oblongue, mais presque ronde et aussi haute que large. Sur la planche VII (fig. 18) de l'ouvrage de Jickeli, cette ouverture n'est pas aussi exactement représentée que le reste de la coquille.

Je crois qu'il convient de rapporter à cette espèce le Planorbis natalensis (non Krauss) de Blandford (1) et de Nevill (2), signalé sur le plateau de Wadela.

M. A. Raffray a recueilli assez abondamment cet Herbini dans les cours d'eau du mont Zeboul et de la plaine des Gallas Raïas.

Ce Planorbe, des environs d'Adowa, est très différent des deux précédents. Il est remarquable par sa forme globuleuse, et par la rapidité de sa croissance spirale.

(1) Geol. and zool. Abyss., p. 473, 1870.
(2) Hand list Moll. ind. mus., p. 248. 1878.
Ainsi, en dessus, le dernier tour forme presque toute la coquille; l’avant-dernier s’enfonce presque brusquement dans la profondeur omnilcal, au point que l’on distingue difficilement les deux du centre, d’autant plus, qu’à partir de l’avant-dernier, où la suture est profonde, cette suture devient tout à fait linéaire.

En dessous, la dépression omnilcal (toute en étant aussi profonde que celle du dessus) parait un peu moins creuse, par cela même qu’elle semble occuper un espace plus vaste, par suite de l’arête anguleuse qui circonscrit son pourtour.

Chez l’Adowensis, l’ouverture d’une forme sémisphérique, est légèrement ascendante.

GASTEROPODA OPERCULATA.

BRANCHIATA.

MELANIDÆ.

MELANIA.

Il existe, dans les auteurs, deux Mélanies abyssiniennes, la dembeana et l’abyssinica de Rupell, qui me paraissent n’être autre chose que la :

MELANIA TUBERCULATA

Cette espèce, connue encore sous le nom de fasciolata, est une forme des plus cosmopolites; elle est répandue, depuis les îles de la Sonde, dans presque toutes les eaux de l’Inde, de l’Arabie, de la Perse, de la Syrie, etc., etc., jusqu’en Afrique, où elle occupe une aire, qui s’étend, à l’orient, de Natal à l’Egypte, et, au nord, de l’Egypte au Maroc.
MALACOLOGIE DE L’ABYSSINIE.

En Abyssinie, elle a été trouvée abondamment dans les eaux de la région chaude du littoral, notamment près d’Ailet, et dans les rivières des hauts plateaux de l’Hamacen.

A cette Mélanie, s’arrête la liste des espèces découvertes par le vice-consul A. Raffray dans le cours de son exploration.

II.

Après ce docteur allemand, le naturaliste anglais Blandford, qui fit partie de l’expédition contre le roi Theodoros, publia de 1869 à 1870, d’abord une lettre dans le *Journal de conchyliologie* (2), puis un fort bel ouvrage intitulé *Observation on the geology and zoology of Abyssinica* (3). Dans cet ouvrage, les Mollusques ont été un peu négligés. Ils sont au nombre de trente (de la page 471 à 477), soit vingt terrestres et dix fluviatiles. La plupart de ces Mollusques sont ou *non* nommés ou *mal* déterminés. Heureusement que le savant malacologiste sir G. Nevill a fait connaître, en 1878, le plus grand nombre des espèces blandfordiennes, dans son excellent catalogue du musée de Calcutta (4).

En 1873, après la publication de divers mémoires sur les Mollusques rapportés par la mission italienne de la mer Rouge

(2) 1869, p. 109

(3) London, 1870, 1 vol. in-8, avec cartes et planches.

et du pays des Bogos, M. le professeur Arturo Issel (de Gênes) inséra (de la page 521 à 530) dans le tome IV de la belle collection des *Annali del museo civico di storia naturale di Genova*, si bien dirigée par M. le marquis G. Doria et par M. R. Gestro, un très bon mémoire rectificatif sur quelques *Molluschi terrestri viventi presso Aden e sulla costa d'Abyssinia*.

J'ai encore à citer, pour compléter cet historique des travaux, non seulement une de mes brochures parue en 1879 (1), mais encore les excellents ouvrages d'un autre docteur allemand.

Ce Dr Carl Jickeli, à la suite d'une exploration entreprise en Abyssinie et dans la vallée du Nil, a donné d'abord le récit de son voyage (2), puis un grand travail sur les *Mollusques* (3) du nord-est de l'Afrique.

Ce travail, bien qu'il renferme en certains endroits des amalgames d'espèces vraiment regrettables, et qui font taches, ne reste pas moins l'ouvrage le mieux fait et le plus consciencieux qui ait été publié jusqu'à présent sur la faune abyssinienne.

Enfin, « il serait injuste d'oublier M. Morelet, dont le mémoire (4) se recommande surtout par la beauté de l'iconographie, » bien que sur la planche qui l'accompagne ce mémoire, une ou deux espèces laissent à désirer. « L'auteur énumère vingt-sept espèces, quelques-unes contestables, qui vivent sur le sol de l'Abyssinie. » Ce chiffre est porté à quarante-cinq dans une liste générale des formes de cette région. « On voit figurer sur cette liste, absolument dépourvue de critique, le genre *Achatina*, ainsi qu'un certain nombre d'espèces con-

damnées par les meilleures autorités. Il y aurait donc à retrancher et à ajouter sur ce catalogue, qui dénote, chez l'auteur, une connaissance fort incomplète de la matière (1).

Dans la liste des Mollusques abyssins que je vais donner, j'ai laissé de côté toutes les formes signalées sans nom, ainsi qu'un certain nombre d'autres incontestablement mal déterminées, comme, par exemple, les *Succinea patris*, *Pfeifferi*, *striata*, *badia*, etc., qui ne sont pas celles dont elles portent les noms.

On doit savoir qu'à l'exception de trois ou quatre espèces cosmopolites bien connues : *Melania tuberculata*, *Limnea truncatula* et *Bulinus insularis*, etc., toutes les formes trouvées en Abyssinie, malgré les rapports de ressemblance que quelques-unes peuvent avoir avec d'autres des continents voisins, sont des formes spéciales à ce pays. Il n'y a point, en réalité, de cas de disjonction.

GASTEROPODA INOPERCULATA.

§ 1. — Pulmonacea.

LIMACIDÆ.

LIMAX JICKELI.

Dans la province de l'Hamacen, aux environs de Mekerka (Jickeli).

HELIXARIONIDÆ.

HELIXARION LYMPHASEUS.

Dans le pays des Bogos (Issel et Beccari).

(1) *Journ. conc.*, 1880, p. 12.
HELIXARION PALLENS.

Helixarion pallens, Morelet (loc. sup. cit.), III, 1872, p. 190, pl. IX, fig. 5.

Habite, avec l'espèce précédente, le pays des Bogos (Issel).

HELIXARION RAFFRAYI.

Helixarion Raffrayi, Bourguignat (voy. p. 9).

Mont Zeboul, chez les Gallas Raïas (Raffray).

THAPSIA ABYSSINICA.

Sud de l'Abyssinie (Heuglin et Steudner); — entre Genda et Asmara, dans l'Hamacen (Jickeli); pays des Bogos (Raffray).

THAPSIA VESTI.

Sur le Rora-beit-ardu et le Sykk-satel, dans l'Hamacen, et près de Keren, chez les Bogos (Jickeli).

THAPSIA OLEOSA.

Thapsia oleosa, Bourguignat (p. 12). — Helix oleosa, Pfeiffer, 1850.

Ibu? (Fraser). — Environ de Keren, chez les Bogos (Issel et Beccari).

THAPSIA EURYOMPHALA.

Thapsia euryomphala, Bourguignat (p. 12).

Mont Zeboul, chez les Gallas Raïas (Raffray).

SITALA RAFFRAYI.

Sitala Raffrayi, Bourguignat (p. 14).

Mont Zeboul, chez les Gallas Raïas (Raffray).

ARTICLE N° 2.
SITALA STEUDNERI.

ra-beit-andu, dans l’Hamacen (Jickeli).

TROCHOMORPHA MOZAMBCICA.

Trochomorpha mozambicensis, Albers, 1860 (voy. p. 14); — _Helix mozambicensis_, Pfeiffer, 1855; — _Trochonanina mozambicensis_, Mousson, 1869 (1), et _Martensia mossambicensis_, Semper, 1870.

Bongo, au sud de l’Abyssinie (Heuglin).

HELICidae.

VITRINA HIANS.

Vitrina hians, Ruppell, Pfeiffer, 1848.

Abyssinie (sans indication de localité), (Ruppell).

VITRINA RUPPELLIANA.

Vitrina Ruppelliana, Pfeiffer, 1848.

Abyssinie (Ruppell), — province du Tigré (Blandford), — Adigrat (Nevill). — L’Abouna Yousef (Raffray).

VITRINA JICKELII.

Vitrina Jickelii, Krauss, in : Jickeli, 1874.

Abyssinie (Heuglin et Steudner).

VITRINA ABYSSINICA.

Vitrina abyssinica, Ruppell, in : Pfeiffer, 1848.

Abyssinie (Ruppell), Takonda (Blandford).

VITRINA SEMIRUGATA.

Vitrina semirugata, Jickeli, 1874.

Entre Genda et Asmara, dans l’Hamacen (Blandford). — Mont Zeboul, chez les Gallas Raias (Raffray).

(1) Le Dr Martens a décrit (Moll. Decken, p. 55 et 56, pl. 1, fig. 2 et 3, 1869), des contrées au sud de l’Abyssinie, deux espèces voisines de celles-ci, sous les noms de _Trochonanina pyramidéa et mozambicensis_, var. _albopicta_.

MALACOLOGIE DE L’ABYSSINIE.
VITRINA ISSELI.

Vitrina Isseli, Morelet, 1872.

Entre Maldi et Gaba, chez les Mensas (Issel).

VITRINA CAILLAUDI.

Vitrina Caillaudi, Morelet, 1872. — Vitrina Martensi, Jickeli, 1873. — Vitrina Isseli (non Morelet), et variétés deccexa et Caillaudi, Jickeli, 1874.

Chez les Mensas, aux environs de Maldi (Issel); — entre Genda et Asmara (Blandford), et, aux alentours de Mekerka (Jickeli).

VITRINA RIEPIANA.

Vitrina Riepiana, Jickeli, 1882.

Abyssinie, dans la chaîne de l’Habab (Jickeli).

VITRINA CONQUISITA.

Vitrina conquisita, Jickeli, 1882.

Chaine de l’Habab (Jickeli).

VITRINA MAMILLATA.

Vitrina mamillata, Martens, 1869.

Ailet, dans le Samhar (Schüller); — bords du lac Aschangan-ghi (Blandford).

VITRINA HELICOIDEA.

Vitrina Helicoidea, Jickeli, 1873

Entre Genda et Asmara, dans l’Hamacen (Jickeli).

VITRINA MILNE-EDWARDSIANA.

Vitrina Milne-Edwardsiana, Bourguignat (p. 18).

Environs d’Addi-boro, entre Keren et Adowa (Raffray).

VITRINA RAFFRAYI.

Vitrina Raffrayi, Bourguignat (p. 20).

Montagne de l’Abouna Yousef (Raffray).
VITRINA HERBINI.

Vitrina Herbini, Bourguignat (p. 22).

Entre Addi-boro et Addi-hollala, sur les plateaux de l’Hamacen et du Saraoué (Raffray).

SUCCINEA RUGULOSA.

Succinea rugulosa, Morelet, 1872; — Jickeli, 1874. — Succ. badia (non Morelet), Martens, 1869.

Environs de Keren, chez les Bogos (Beccari); — dans le Samhar, aux alentours d’Ailet (Schüller); — hauts plateaux de l’Hamacen (Raffray).

SUCCINEA POIRIERIANA.

Succinea Poirieriana, Bourguignat (p. 25).

Environs d’Abrechoho, sur les hauts plateaux de l’Hamacen (Raffray).

SUCCINEA ADOWENSIS.

Hauts plateaux de l’Hamacen et du Tigré, notamment aux environs d’Adowa (Raffray).

SUCCINEA LIMICOLA.

Aux alentours de Chotel, chez les Bogos (Beccari).

SUCCINEA ETHIOPICA.

Succinea ethiopica, Bourguignat (p. 27).

Hauts plateaux de l’Hamacen (Raffray) (1).

(1) Je passe sous silence les Succinea Pfeifferi, debilis et putris, ainsi que les striata et badia, de Blandford et de Martens, mentionnées par Jickeli, des environs du lac Aschanghi et de divers points de l’Abyssinie, parce qu’elles sont des formes mal déterminées, qui ne sont pas admissibles.
HELIX PILIFERA.

Helix pilifera, Martens, 1869.

Abyssinie (Ruppell); — pays des Mensas, entre Maldi et Gaba (Issel).

HELIX COMBESIANA.

Montagne de Rora-beit-andu (Jickeli).

HELIX FERRETTIANA.

Helix Ferretiana, Bourguignat (p. 31).

Mont Zeboul, chez les Gallas Raïas (Raffray).

HELIX HERBINI.

Helix Herbini, Bourguignat (p. 32).

Hauts plateaux de l’Hamacen et du Tigré entre Keren et Adowa (Raffray).

HELIX GALINIERIANA.

Helix Galinieriana, Bourguignat (p. 33).

Environs d’Adowa (Raffray).

HELIX BECCARII.

Environs de Keren, chez les Bogos (Issel).

HELIX ABBADIANA.

Île de Scheik-Saïd, près de Massaouah (Issel).

(1) Je n’ai pu adopter le nom de *Brochii*, parce que Calcaria (*Esp. moll. terr.*, 1842, p. 12) a décrit, sous le même nom, une espèce sicilienne différente de celle d’Abyssinie.

(2) Jickeli rapporte la *cryophila* de Morelet à sa *Brochii*, bien que Morelet ait dit (p. 186) que son espèce rappelait la forme de la *pygmaea*.

ARTICLE N° 2.
MALACOLOGIE DE L'ABYSSINIE.

HELIX BRUCEI.

Environs de Mekerka, dans l'Hamacen (Jickeli).

HELIX CRYOPHILA.

Sud de l'Abyssinie (Heuglin et Steudner); — environs d'Adigrat et de Meshek, dans le Lasta (Blandford); — environs de Bajeta (10000 p.) dans le Semen (*Dr* Solms Laubach); — alentours de Mekerka, dans l'Hamacen (Jickeli).

HELIX ABYSSINICA.

Environs de Mekerka; — mont d'Enjelal (7995 p. angl.); — Nakta, dans l'Hamacen (Jickeli); — col de l'Abouna Yousef, à une altitude de 4024 mètres, dans le Lasta (Raffray).

HELIX RAFFRAYI.

Helix Raffrayi, Bourguignat (p. 35).

Mont Zeboul, chez les Gallas Raïas (Raffray).

HELIX ISSELI.

Helix Isseli, Morelet, 1872. — *Helix Darnaudi* (pars), Jickeli, 1874 (non Pfeiffer).

Pays des Bogos (Issel).

HELIX LEJEANIANA.

Hauts plateaux entre Keren et Adowa (Raffray).

HELIX ACHILLI.

Helix Achilli, Bourguignat (p. 38).

Région chaude entre Massaouah et les plateaux de l'Hamacen (Raffray).

ANN. SC. NAT., ZOOL., AVRIL 1883. XV. 11. — ART. N° 2.
J.-R. BOURGUIGNAT.

HELIx Darnaudi.

Helix Darnaudi, L. Pfeiffer, 1856 (non Jickeli, nec Blandford).

De l'Abyssinie?

HELIx Heuglini.

Sud de l'Abyssinie (Heuglin).

HELIx Hamacenica.

Helix Hamacenica, Raffray (p. 40).

Hauts plateaux de l'Hamacen (Raffray).

HELIx Subnivellina.

Helix subnivellina, Bourguignat (p. 41).

Hauts plateaux de l'Hamacen (Raffray).

BULIMUS Raffrayi.

Bulimus Raffrayi, Bourguignat (p. 46).

Mont Aladjié, à une altitude de 3000 mètres, dans l'Anderta (Raffray).

BULIMUS Herbini.

Bulimus Herbini, Bourguignat (p. 47).

Mont Aladjié (Raffray).

BULIMUS Simonis.

Bulimus Simonis, Bourguignat (p. 49).

Mont Aladjié et hauts plateaux de l'Anderta (Raffray).

BULIMUS Achilli.

Bulimus Achilli, Bourguignat (p. 50).

Mont Abouna-Yousef, dans le Lasta, à une altitude de plus de 4000 mètres (Raffray).

Articic n° 2.
BULIMUS TAMISIERIANUS.

Bulimus Tamisierianus, Bourguignat (p. 52).

Hauts plateaux de l’Anderta (Raffray).

BULIMUS OLIVIERI.

Bulimus Olivieri, L. Pfeiffer, 1847 et 1848; Martens, 1865, 1866 et 1870; — *Buliminus Olivieri*, Jickeli, 1874.

BULIMUS ABBADIANUS.

Bulimus Abbadianus, Bourguignat (p. 51).

Mont Aladjié (Raffray).

BULIMUS JICKELIANUS.

Plateau de Wadela, aux environs de Nazoo et Yasendyé. — Variété à dernier tour moins comprimé, aux alentours d’Undul et de Sénéfé (Blandford).

BULIMUS ABYSSINICUS.

Hauts plateaux de l’Hamacen et de l’Anderta aux environs de Keren, d’Addi-Baro, de Mékélé, etc. (Raffray); — Zebergoma près de Asmara (Jickeli); — Ailet, dans le Samhar (Schüller); — chaîne de l’Habab, à Haddoda près Zulla (Blandford); — pays des Bogos et dans les îles Dahalac, près de Massaouah (Issel).

BULIMUS GALINIERIANUS.

Bulimus Galinierianus, Bourguignat (p. 56).

Addi-Hohalla, dans l’Hamacen (Raffray).
Bulimus Lejeanianus, Bourguignat (p. 57).

Région basse du littoral; — environs d'Ailet et sur les hauts plateaux de l'Hamacen (Raffray).

Bulimus Hemprichi, Jickeli, 1874. — Bulimus abyssinicus, var. B. minor, Morelet, 1872.

Entre Maldi et Gaba, chez les Bogos (Issel); — hauts plateaux de l'Hamacen (Raffray).

Bulimus Sennaaricus, Bourguignat (p. 59). Pupa sennaariensis, Pfeiffer, 1855, 1856 et 1859; Martens, 1865; Bulimus cerealis, Paladilhe, 1872; — Buliminus fallax (pars), Jickeli, 1874.

Environs de Massaouah; — hauts plateaux de l'Hamacen et mont Abouna-Yousef, dans le Lasta, à une altitude de 4000 mètres (Raffray).

Bulimus Æthiopicus, Bourguignat (p. 62), Buliminus fallax (pars), Jickeli, 1874.

Hauts plateaux de l'Hamacen et de l'Anderta; — mont Abouna-Yousef (Raffray).

Bulimus Subeminus, Bourguignat (p. 63). Bulimus eminulus, Morelet, 1872 (non Morelet, 1838, 1858, et Jickeli, 1874).

Environs de Keren, chez les Bogos (Issel, Raffray).

Bulimus Macroconus, Bourguignat (p. 65).

Keren, chez les Bogos (Raffray).

Bulimus Insularis, Jickeli, 1874 (voy. p. 65); Pupa insularis, Ehrenberg, 1831.

Environs de Massaouah, ainsi que dans le pays des Bogos, et sur les hauts plateaux de l'Hamacen (Raffray); — Weld-
MALACOLOGIE DE L'ABYSSINIE. 115

Jawa à 2615 pieds et çà et là dans le Samhar (Jickeli); — sur le littoral de la baie d'Assab et dans les îles Dahalac et Ras-Gherar, près de Massaouah (Issel).

RAFFRAYA MILNE-EDWARDSI.
Raffraya Milne-Edwardsi, Bourguignat (p. 67).

Au col (4024 mètres) de l'Abouna-Yousef (Raffray).

ABBADIA AETHIOPICA.
Abbadia aethiopica, Bourguignat (p. 69).

Monts Zeboul (1994 mètres) chez les Gallas Raïas (Raffray).

ORCULA IMBRICATA.

Entre les villages de Genda et Asmara dans l'Hamaecn (Jickeli); — environs de Sénafé, d'Adigrat, d'Agula et de Meshek (Blandford); — montagne d'Abouna-Yousef, à une altitude de 4000 mètres (Raffray).

PUPILLA BRUGUIERI.
Pupilla Bruguierei, Bourguignat (p. 71); Pupa Bruguierei, Jickeli, 1874; — Pupa umbilicata, Martens, 1866, et Jickeli, 1873 (non Draparnaud); Pupa Heuglini, Krauss, teste Jickeli.

Sud de l'Abyssinie (Heuglin et Steudner); — monts Enjelal et Bagla, à une altitude de 7995 pieds (Jickeli); — Agula et Takonda, dans le Tigré (Blandford); — Adigrat et Undul (Blandford), teste Newill (Hand list., p. 196); — mont Zeboul (1994 mètres) et au col (4024 mètres) de l'Abouna-Yousef (Raffray).

PUPILLA RAFFRAYI.
Pupilla Raffrayi, Bourguignat (p. 71); — Pupa fontana (pars), Jickeli, 1874 (non Krauss, 1848).

Environs du village d'Asmara, à une altitude de 7200 pieds, et sur les bords du Toquor près de Mekerka, ainsi que sur l'Enjelal à 7995 pieds (Jickeli); — col (4024 mètres) de l'Abouna-Yousef (Raffray).
PUPILLA GLOBULOSA.

Pupilla globulosa, Bourguignat (p. 72); Pupa fontana, var. globulosa, Jickeli, 1874.

Asmara et Mekerka (Jickeli); — mont Zeboul (1994 mètres) chez les Gallas Raïas, ainsi que sur les hauts plateaux de l’Hamacen et de l’Anderta (Raffray).

VERTIGO BISULCATA.

Vertigo bisulcata, Bourguignat (p. 73). — Pupa bisulcata, Jickeli, 1873 et 1874.

Mont Rora-beit-andu, et environs de Keren, chez les Bogos (Jickeli); — col (4024 mètres) de l’Abouna-Yousef (Raffray).

VERTIGO KLUZINGERI.

Keren, chez les Bogos; environs de Genda et d’Asmara; mont Rora-beit-andu; enfin, sur les bords du Toquor près Mekerka, dans l’Hamacen (Jickeli).

VERTIGO PLEIMESI.

Chaîne des monts Habad, dans le ravin d’Asqaq (5664 pieds) (Jickeli).

ISTHmia HAGGEnMACHERI.

Ravin d’Asqaq, dans les monts Habab (Jickeli).

ISTHmia REINHARDTI.

Environs de Mekerka, et bords du Toquor, dans l’Hamacen (Jickeli).
ISTHMIA ABYSSINICA.

abyssinie (Heuglin et Steudner); — Adigrat (Blandford).

ISTHMIA LARDEA.

Mont Rora-beit-andu à une altitude de 4200 pieds, et vers la descente de Nakfa, dans la chaîne de l’Habab (Jickeli).

ISTHMIA SCHILLERI.

Mont d’Enjelal, à une altitude de 7995 pieds, dans la chaîne de l’Habab (Jickeli).

ISTHMIA BLANDFORDI.

Bords de l’Asqaq et près du village de Sykk, proche Nakfa, dans la chaîne de l’Habab (Jickeli).

ISTHMIA SIMILIS.

Isthmia simillis, Bourguignat. — Pupa simillis, Jickeli, Moll. n. o. Afr., 1874, p. 296, pl. V, fig. 16.

Environs de Nakfa (Jickeli).

CLASILIDÆ.

CLASILIA SENNAARICA.

Clausilia sennaarica, Bourguignat (p. 71); Clausilia sennaariensis, Pfeiffer, 1855, 1859; Martens, 1865 et 1870; Blandford, 1870.

Environs du lac Aschanghi (Blandford); — col (4024 mètres) de l’Abouna-Yousef (Raffray).
CLAUSILIA DYSTHERATA.

Montagne d'Enjelal (7995 pieds) et sur le Rora-Asgédès dans la chaîne de l'Habab (Jickeli).

ENNEIDÆ.

ENNEA DENTICULATA.

Assez abondante dans toutes les contrées abyssiniennes, depuis le pays des Bogos jusqu'au lac Aschanghi.

ENNEA RAFRAYI.

Ennea Rafrayi, Bourguignat (p. 77).

Plateau de l'Anderta à Antalo-Belessa (Raffray).

ACHATINIDÆ (1).

PACHNODUS ROCHEBRUNIANUS.

Pachnodus Rochebrunianus, Bourguignat (p. 79).

Mont Zeboul, chez les Gallas Raïas (Raffray).

LIMICOLARIA RUPPELLIANA.

De l'Abyssinie (Ruppel).

LIMICOLARIA SENNAARICA.

(1) Je ne connais pas de vrais *Achatina* en Abyssinie.
MALACOLOGIE DE L'ABYSSINIE.

Environ de Keren, chez les Bogos (Issel).

LIMICOLARIA HEUGLINI.

Sud de l'Abyssinie (Heuglin).

OPEAS GRACILIS.

nogyra gracilis, Martens, in : Malak. Blätt., 1870, p. 83. — Spiraxis graci-
lis, Blandford, Geol. zool. Abyss., 1870, p. 476. Limicolaria Bourqui-
gnati, Paladilhe, in Ann. mus. civ. Genova, III, 1872, p. 18, pl. I, fig. 13-

Cette espèce cosmopolite a été retrouvée, à ce qu'il paraît, dans le Tigré, aux environs d'Adabagi (Blandford).

BECCARIA ISSELI.

Du pays des Bogos (Beccari). — Cette coquille, qui ne possède pas les caractères d'une Subulina, et que j'inscris sous le nouveau nom générique de Beccaria, est une très petite espèce vitrécée (alt. 2 1/2, diam. 1 1/2 mill.), à columelle droite, non tronquée à la base, à ouverture verticale, entourée d'un péri-
stome droit et simple, à cinq tours convexes, séparés par une suture très profonde, dont les premiers sont ornés de costula-
tions spirales, et les derniers de fortes côtes transversales. Comme il m'est impossible de classer cette coquille dans aucun des genres africains, je me suis décidé à lui donner le nouveau nom générique de Beccaria.
FERRUSACCIDÆ.

GLESSULA MONTANA.

Guno (1200 prêts) dans le Begemder, Abyssinie orientale (Heuglin).

CŒLESTELE PALADILHIANA.

Dans les sables, sur la plage de Scheik-Saïd, près de Massaouah (Issel).

STENOGYRIDÆ.

SUBULINA CYANOSTOMA.

Grande et belle espèce, à péristome bleu, du sud de l’Abys- sinie (Ruppell, Heuglin et Steudner).

SUBULINA VERNICOSA.

Magnifique espèce, très distincte de l’Antinorii de Morelet, de la province de l’Hamacen, entre Genda et Asmara.

ARTICLE N° 2.
MALACOLOGIE DE L'ABYSSINIE. 121

SUBULINA ANTINORII.

Montagne de Doubour-Chaïr, dans le pays des Mensas, entre les Bogos et le Samhar (Issel).

SUBULINA PERRIERIANA.

Subulina Perrieriana, Bourguignat (p. 81).

Hauts plateaux de l'Anderta (Raffray).

SUBULINA VARIABILIS.

Environs d'Asmara (Jickeli), et hauts plateaux de l'Hama-cen (Raffray).

SUBULINA LHOSTELLERII.

Asmara (Jickeli), environs d'Adowa et montagne de l'Abouna-Yousef (Raffray).

SUBULINA JICKELII.

Entre Genda et Asmara (Jickeli).

SUBULINA SUAVEOLENS.

Subulina suaveolens, Jickeli, 1874. — Stenogyra suaveolens, Jickeli, 1873.

Entre Genda et Asmara (Jickeli); — l'Abouna-Yousef, dans le Lasta (Raffray).

SUBULINA ANGUSTATA.

Vers le ravin d'Asqaq, près de Nakfa, dans la chaine de l'Habab (Jickeli).
SUBULINA SUBULATA.

Entre Genda et Asmara, ainsi qu’aux environs de Mekerka, près du Toquor (Jickeli).

SUBULINA MUNZINGERI.

Chaîne de l’Habab, aux environs de Nakfa (Jickeli), et montagne de l’Abouna-Yousef (Raffray).

SUBULINA MARILLIANA.

Subulina Marilliana, Bourguignat (p. 83).

Col (4024 mètres) de l’Abouna-Yousef (Raffray).

CAECILIANELLIDÆ.

CAECILIANELLA ISSELI.

Plage de l’île de Scheik-saïd, près de Massaouah (Issel).

AURICULIDÆ.

AURICULA SUBULA.

Auricula subula, Quoy et Gaymard, Voy. Ast. zool., II, 1832, p. 171, pl. 13, fig. 39-40, et Pfeiffer, Monogr. auric. viv., 1856, p. 141.

Île de Scheik-saïd, près Massouah (Jickeli).

MELAMPUS MASSAUENSIS.

ARTICLE N° 2.
Environs de Massaouah (Hemprich, Ehrenberg et Issel); — îles de Scheik-saïd et de Tau-el-hud près de Massaouah (Jickeli).

MELAMPUS SIAMENSIS.

Environs de Massaouah et sur le littoral des îlots vis-à-vis de cette ville; — le docteur Jickeli rapporte, à cette espèce, les *fasciatus* et *Ehrenbergianus* de Morelet, qui sont des formes adultes et tout à fait distinctes, comme on peut s'en convaincre par la comparaison des figures et des descriptions.

MELAMPUS EHRENBERGIANUS.

Ile de Scheik-saïd, près de Massaouah (Issel).

LÆMODONTA GRANUM.

Ile de Scheik-saïd (Issel).

LÆMODONTA BRONII.

Îlots vis-à-vis Massaouah (Jickeli).

LÆMODONTA OBLONGA.

Dans les îles et aux environs de Massaouah (Jickeli).

LÆMODONTA Amplicata.

Environs de Massaouah.
LEMODONTA AFFINIS.

Iles vis-à-vis Massaouah.

PLECOTREMA RAPAX.

Iles près Massaouah.

CASSIDULA NUCLEUS.

Iles et environs de Massaouah (Issel et Jickeli).

CASSIDULA LABRELLA.

Se trouve dans les mêmes localités que les précédentes. Je crois que la *Cassidula Kraussi* de Kuster, que Jickeli rapporte à cette espèce, est une forme différente.

§ 2. — PULMOMBRANCHIATA.

ANCYLIDÆ.

ANCYLUS HAMACENICUS.

Dans le torrent du Toquor près de Mekerka, dans l’Hamacen (Jickeli).

Article n° 2.
ANCYLUS AYYSSINICUS.

Ancylus abyssinicus, Jickeli, 1874, et Nevill, 1878. — Ancylus fluviatilis, Blandford, 1870 (p. 85).

Rivière de Guna-Guna dans le Tigré (Blandford); — cours d’eau entre Genda et Asmarâ et torrent du Toquor, près Mekerka (Jickeli); — rivière de l’Anseba, près d’Abrechocho (Raffray) (1).

LIMNÆIDÆ.

LIMNÆA CAILLAUDI.

Limnœa Caillaudi, Bourguignat (p. 89).

Lac Dembea et Nil bleu (Verreaux).

LIMNÆA EXSERTA.

Limnœa exserta, Bourguignat (p. 89), et Limnœus natalensis, var. exserta, Martens, 1866, et Jickeli, 1874.

Fontaine de Zaga, près Zasaga (Heuglin), Nil bleu (Galinier).

LIMNÆA ACROXA.

Limnœa acroxa, Bourguignat (p. 90).

Nil bleu au-dessous du lac Dembea (Verreaux).

LIMNÆA ALEXANDRINA.

Limnœa alexandrina, Bourguignat (p. 92).

Le Nil bleu (Caillaud, Verreaux).

LIMNÆA RAFFRAYI.

Limnœa Raffrayi, Bourguignat (p. 93).

Flaques d’eau dans la vallée de l’Anséba, aux environs d’Abrechocho (Raffray).

LIMNÆA ÆTHIOPICA.

Limnœa æthiopica, Bourguignat (p. 94).

Vallée de l’Anséba, avec la précédente (Raffray).

(1) Je laisse de côté une espèce non décrite ni nommée de Blandford.
J.-R. BOURGUIGNAT.

LIMNÆA AFRICANA.

Limnœa africana, Ruppell (p. 95).

Lac Dembea (Ruppell).

LIMNÆA TRUNCATULA.

Le Toquor, près de Mekerka (Jickeli); — Antalo (Blandford); — Adowa et ruisseaux de la chaîne du Zeboul (Raffray).

PHYSA NATALICA.

Physa natalica, Bourguignat (p. 98); — *Physa natalensis*, Krauss, 1848.

Ruisseaux du mont Zeboul et des Gallas Raïas (Raffray).

PHYSA SERICINA.

Physa sericina, Jickeli, 1874.

Le Toquor près de Mekerka (Jickeli), et ruisseaux du mont Zeboul (Raffray).

PHYSA SCHACKOI.

Le Toquor, près de Mekerka, dans l'Hamacen (Jickeli).

PHYSA CONTORTA.

Physa contorta, Michaud, 1829, 1831 et 1833, Bourguignat, 1864; — Martens (pars), 1866 et 1870; — Blandford, 1870, et Jickeli (pars), 1874, seulement, pour les figures 14, A et B.

Lac Aschanghi (Blandford et Raffray).

PHYSA FISCHERIANA.

Physa Fischeriana, Bourguignat, in *Amœn. malac.*, 1, p. 146 (janv. 1856), pl. XI, fig. 1-3.

Abyssinie (ex Verreaux).

Article N° 2.
Physa Forskali.

Physa Forskali, Bourguignat, 1856. — Isidora Forskali, Ehrenberg, 1831, et Jickeli (pars), 1874.

Ailet (Schüller et Raffray); — Maldi, sur les bords du torrent Lebka, à l'endroit de la fontaine (Beccari et Issel).

Physopsis abyssinica.

Sud de l'Abyssinie (Heuglin et Steudner).

Physopsis eximia.

Sud de l'Abyssinie.

Planorbidae.

Planorbis Rupelli.

Planorbis Rupelli, Dunker, 1848 (p. 100); — Martens, 1866 et 1869; — Morelet, 1872; — Blandford, 1870; — Jickeli, 1874, pl. VII, fig. 17 seulement; — Nevill, 1878.

Abyssinie (Rupelli); — rivière du Tigré (Blandford); — Undul et dans la rivière de Guna (Nevill); — dans le Samhar, aux environs d'Ailet, et dans la fontaine de Lekka (Schüller); — aux alentours de Mensa, près Maldi (Issel et Beccari); — rivière de Toquor, près Mekerka, ainsi que dans l'Anséba, etc. (Jickeli).

Planorbis Herbini.

Planorbis Herbini, Bourguignat (p. 101), Planorbis Rupelli (altera pars), Jickeli, Moll. n. o. Afr., 1874, pl. VII, fig. 18 seulement (la figure 17 représente le vrai Rupelli); — Planorbis natalensis (non Krauss) de Blandford, 1870, et Nevill, 1878.

Cours d'eau du plateau de Wadela (Blandford), et de la montagne du Zeboul, chez les Gallas Raïas (Raffray).
J.-R. BOURGUIGNAT.

PLANORBIS ADOWENSIS.

Planorbis adowensis, Bourguignat (p. 101).

Environs d'Adowa.

PLANORBIS ABYSSINICUS.

Rivière du Toquor, près Mekerka, dans l’Hamacen (Jickeli); — lac Aschanghi (Blandford).

PLANORBIS ÄTHIOPICUS.

Planorbis æthiopicus, Bourguignat, 1883; — Planorbis Stelzneri (1), Martens, in Malaç Blätt., 1869, p. 212 (teste Jickeli); — Planorbis costulatus (2), var. Jickeli, Moll. n. o. Afr., 1874, p. 219 (pars), et pl. VII, fig. 23 seulement.

Le Toquor, près de Mekerka, dans l’Hamacen. — Ce Planorbe, rapporté par le D. Jickeli au costulatus de la terre de Natal, est très différent de celui de Krauss, comme on peut s’en convaincre par la comparaison des figures (pl. V, fig. 8) de Krauss, et (pl. VII, f. 23 seulement) de Jickeli. Les différences sont même si sensibles qu’elles sautent à la vue.

J’ai indiqué pour l’æthiopicus la figure 23 seule, parce que l’auteur allemand a confondu, sous la même appellation de costulatus, deux espèces bien distinctes; d’abord celle représentée figure 23, à laquelle je viens de donner la dénomination d’æthiopicus; ensuite celle (fig. 22), qui, par la convexité de sa spire, rentre dans la nouvelle coupe générique des Cailлавие, établie par moi en 1879, en l’honneur du célèbre voyageur Frédéric Caillaud, de Nantes, pour de petites coquilles nilicoles, de forme choanomphalienne.

Les Caillaudies sont des Mollusques à spire plus ou moins convexe, dont les tours offrent un bombement tectiforme. La

(2) Non, Plan. costulatus de Krauss, Sudaf. Moll., p. 83, pl. V, fig. 8, 1848.

ARTICLE N° 2.
Caillaudia Letourneuxi, de la basse Égypte, entre autres espèces, possède des tours si bombés-tectiformes, et, en même temps, en dessous, une concavité ombilicale si largement évasée, qu'elle imite, aussi bien en dessus qu'en dessous, le couvercle d'un parasol. Je donne, à titre de curiosité, la représentation (fig. 49-52) de cette Caillaudie égyptienne.

En Abyssinie, ce genre est représenté par la :

CAILLAUDIA ANGULATA.

Cette espèce, bien qu'elle n'offre pas, à un degré aussi prononcé, les caractères que l'on remarque chez la *Letourneuxi*, n'en est pas moins une Caillaudia. Elle a été recueillie dans les cours d'eau des hauts plateaux de l'Hamacen.

SEGMENTINA ANGUSTA.

Le Toquor, près de Mekerka, dans l'Hamacen (Jickeli).

GASTEROPODA OPERCULATA

§ 1. — Pulmonacea.

TRUNCATELLIDÆ.

TRUNCATELLA TERES.

Bords des îles et environs de Massaouah.

TRUNCATELLA SEMICOSTULATA.

Vit avec la précédente.
J.-R. BOURGUIGNAT.

§ 2. — Brachiata.

PALUDINIDÆ.

VIVIPARA UNICOLOR.

Du lac Dembea, ou Tzana (Heuglin et Steudner).

VIVIPARA ABYSSINICA.

Sud de l’Abyssinie (Heuglin et Steudner); — lac Dembea (Steudner).

CLEOPATRA BULIMOIDES.

De l’Abyssinie (Heuglin, teste Frauenfeld).

DIGYREIDUM SENNAARICUM.

Cette espèce appartient au nouveau genre établi par le conseiller Letourneux (1) pour des coquilles pourvues d’un opercule ayant deux modes d’enroulement : un mode spirecent au centre, et un mode concentrique à la périphérie.

Le sennaaricum vit dans tout le cours du Nil Bleu, depuis le

(1) In Locard, Prodr. malac. Fr., p. 224, 1832, sous le vocable Digyreidum (improperement Digyreidum, errore typographico).
lac Dembea jusqu'à Khartoum, et depuis Khartoum, dans le grand Nil, jusqu'en Égypte.

Je n'ai pas cité Jickeli (Moll. N. O. Afr., 1874, p. 245), parce que sous le nom de Bythinia sennaariensis, cet auteur a confondu : 1° le digyreidum sennaaricum, et 2° une variété adspersa (p. 246, pl. VII, f. 32) de l'Égypte, qui me paraît être une Amnicole.

Je passe sous silence également une Bythinie d'Antalo, en Abyssinie, parce qu'elle est signalée, sans nom et sans caractères, par Blandford (1).

MELANIDÆ.

MELANIA TUBERCULATA.

Melania tuberculata, Bourguignat, 1853 et 1864 (Nerita tuberculata, Müller 1774). — Melania Dembeana et abyssinica, Ruppell (p. 102).

Lac Dembea (Ruppell); dans toutes les eaux du Samhar, notamment à Ailet (Schüller, Raffray); — cours d'eau de Maldi et du pays des Bogos (Issel), ainsi que de l'Hamacen (Raffray).

AMPULLARIDÆ.

AMPULLARIA KORDOFANA.

Commune dans le lac Dembea et dans le cours du Nil Bleu (Verreaux, Joannis).

(1) Geol. zool. Abyss., p. 472, 1870.

(2) Je ne cite pas les travaux de MM. Martens et Jickeli, parce que ces deux auteurs ont confondu sous le nom d'ovata au moins quatre espèces distinctes.
J.-R. BOURGUIGNAT.

MELADOMUS BOLTENIANUS.

Espèce abondante dans le Nil Bleu, ainsi que dans le lac Dembea (Caillaud, Joannis, Verreaux) (1).

NERITINIDÆ.

THEODOXIA AFRICANA.

La Theodoxia (Neritina) nilotica de Reeve (Iconogr., IX, sp. 157), rapportée à l'Africana par Jickeli, me paraît une forme bien distincte. Je ne la connais que du Nil inférieur. Quant à l'Africanus, qui vit dans le haut Nil, elle a été constatée en Abyssinie au-dessous du lac Dembea (Verreaux).

MOLLUSCA ACEPHALA
LAMELLIBRANCHIATA.

SPHÆRIDÆ.

CORBICULA CONSOBRINA.

Le Nil Bleu et le lac Dembea (Heuglin, Steudner et Caillaud).

SPHÆRIUM SUBCAPENSE.

Le Toquor, près de Mekerka, dans l’Hamacen (Jickeli). — Bien que ce Sphœrium abyssin rappelle un peu le Cyclas capensis de Krauss (2), il est néanmoins suffisamment distinct pour qu’il soit élevé au rang spécifique, comme on peut s’en convaincre par l’examen attentif des figures données par Krauss et Jickeli.

EUPÉRA PARASITICA.

Du lac Dembea (Verreaux), et vraisemblablement dans tout le cours du Nil, puisque je la connais des canaux d’Alexandrie. — Cette forme est parfaitement représentée (pl. XI, fig. 16)

(1) Il n’est impossible de citer Jickeli (*Moll. n. o. Afr.*, 1874, p. 283) parce que cet auteur a réuni sous le nom de *fluminalis* non seulement la *consobrina*, mais un grand nombre de formes disparates.

(2) *Sud Afr. Moll.*, p. 7, pl. 1, fig. 6, 1848.

dans l'ouvrage de Jickeli. La figure 17, que l'auteur allemand a également placée sous le nom de Limosina ferruginea, est une forme bien distincte de la vraie parasitica. Je lui attribue l'appellation de :

EUPERA JICKELII.

Eupera Jickelii, Bourguignat; — Limosina ferruginea (altera pars), Jickeli, Moll. n. o. Afr., 1874, pl. XI, fig. 17 seulement (1).

Cette Eupérie, qui a été également découverte en Abyssinie, un peu au-dessous du lac Dembea (Verreaux), s'est propagée dans tout le Nil jusque dans la basse Égypte. Je donnerai plus tard les caractères de cette espèce, ainsi que de toutes celles de ce genre, dans la suite de mes matériaux pour servir à l'histoire des Mollusques Acéphales du système européen; en attendant, la figure 16 (pl. XI) de l'ouvrage de Jickeli, représentant la vraie parasitica, et celle 17, la Jickelii, sont assez exactes, pour qu'on puisse reconnaître ces deux espèces.

Le genre Eupera a été établi par moi, en 1854, comme coupe sous-générique des Pisidies, pour de très petites coquilles pisidioides, ordinairement maculées de points noires, et possédant le ligament sur le plus grand côté; la dent cardinale est nulle, ou seulement indiquée par une petite éminence; les dents latérales sont relativement très fortes.

Les principales espèces de ce genre, que M. Clessin a réédité, en 1872, sous le nom de Limosina, sont : d'abord l'Eupera Moquiniana (Pisidium) Bourguignat, in Amén. malac. (1, p. 61, pl. 3, fig. 13-17, 1854) de l'Amérique du Sud; ensuite les Eupera parasitica et Jickelii, que je viens de mentionner; puis l'Eupera Letourneuxi, Bourguignat, des canaux d'Alexandrie; — belle espèce de la taille de la Jickelii, caractérisée par une forte ventrosité de sa région ombonale; par son bord inférieur rectiligne, même légèrement concave; par ses sommets moins antérieurs; par son angle postéro-dorsal complètement émoussé, ce qui fait que le bord postéro-supérieur,

(1) C'est à cette espèce qu'il faut rapporter l'espèce publiée par Deshayes (Cat. conch. biv., p. 280, 1853), sous le nom de Pisum parasiticum.

ARTICLE N° 2.
des sommets au rostre, qui est inférieur, offre une convexité parfaite en dos d’âne, etc.; — enfin l’Eupera ferruginea (Cyclas) de Krauss (Sud Afr. Moll., p. I, fig. 7, 1848) (1), du Cap de Bonne-Espérance (2); coquille tout à fait particulière à cette région. La vraie ferruginea, très inéquiliatrale, a une région antérieure excessivement réduite, relativement à sa postérieure, qui est largement développée.

UNIONIDÆ.

UNIO ABYSSINICUS.

Du lac Dembea (Heuglin). — La variété B du Dr Jickeli (p. 279), représentée, d’après un échantillon jeune (pl. IX, fig. 10), me semble devoir être distinguée de l’Abyssinicus.

UNIO ÀNEUS.

Unio Àneus, Jickeli, Moll. n. o. Afr., 1874, p. 274, pl. IX, fig. 2.

Lac Dembea (Ruppell).

UNIO DEMBEÆ.

Lac Dembea (Heuglin et Steudner).

UNIO JICKELII.

Espèce bien distincte de la précédente, également du lac Dembea.

IRIDINIDÆ.

MUTELA NILOTICA.

Tout le cours du Nil Bleu (Verreaux, Caillaud, Botta et Joannis). Cette espèce descend jusqu’en Égypte.

MUTELA ANGUSTATA.

Mutela angustata, Jickeli, Moll. n. o. Afr., 1871, p. 268; — Iridina angustata, Sowerby, in Reeve, Conch. iconogr., XVI, sp. 5; — (sans nom), Savigny, Pl. de l'Égypte, pl. VII, fig. 2.

Se trouve avec la précédente.

SPATHA CAILLAUDI.

Spatha Caillaudi, Martens, in Mutak. Blätt., 1866, p. 9 et 102, et 1870, p. 34, et 1873, II, p. 43; — et Jickeli, Moll. n. o. Afr., 1874, p. 259 (1); — (sans nom), Savigny, Planches de l'Égypte, pl. VII, fig. 1; — Anodonta rubens (2), Caillaud, Voy. à Méroé, IV, p. 262, 1827, et Atlas, II, 1823, pl. 6, fig. 12.

Dans tout le cours du Nil Bleu (Verreaux, Caillaud). — MM. Martens et Jickeli ont parfaitement eu raison de séparer, sous un nom spécial, cette espèce de la vallée du Nil.

ÆTHERIDÆ.

J'ai donné dans le tome premier des Matériaux pour servir à l'histoire des Mollusques Acéphales du système européen de la page 53 à 72 (1880), une notice monographique sur les

(1) Il faut retrancher de la synonymie la Spatha Chaiziana.
(2) Non Anodonta rubens, de Lamarck (Anim. s. vert., VI, 1re partie, 1819, p. 85), et de Deshayes (2e édit. de Lamarck, VI, 1835, p. 566 (Excl. pler. synon.), espèce du Sénégal, différente de celle du Nil, bien qu'assez ressemblante. C'est cette ressemblance qui est cause que les auteurs d'autrefois, qui n'y regardaient pas de si près et qui avaient la manie des réunions, ont confondu, sous le nom de rubens, les deux formes du Sénégal et du Nil.
Æthérias. J'ai montré combien il était facile de distinguer les diverses espèces de ce genre au moyen de la forme du talon. Je renvoie à ce mémoire pour la connaissance des Æthérias abyssiniennes, que je vais mentionner.

Ætheria Caillaudi.

Dans tout le cours du Nil Bleu, jusqu’au lac Dembea (Caillaud, Verreaux). — Grande espèce caractérisée par un talon feuilleté d’une excessive longueur, conservant sur toute son étendue à peu près la même grosseur. Valves très feuilletées, irrégulières, toujours d’une forme allongée-oblongue, dépassant peu, en largeur, le diamètre du talon ; intérieur d’une nacre micacée blanchâtre ; extérieur d’un noir verdâtre, avec de nombreuses spinules tubuleuses, irrégulièrement placées.

Ætheria Tubifera.

Le Nil Bleu à Kassaba, Mina, etc. (Joannis, Verreaux). — Valve adhérente plus grande que l’autre, ayant toujours sa plus forte longueur dans le sens transversal (c’est l’inverse chez la Caillaudi), à talon court, conique, incliné à droite ou à gauche, à sommet toujours aigu. Nacre intérieure d’un vert bleuacé. Surface externe ornée de spinules tubuleuses.

Chez cette espèce, de même que chez la suivante, le test ne s’accroît pas comme celui de la Caillaudi en juxtaposant ses couches lamelleuses les unes à la suite des autres dans le sens de la longueur, mais dans le sens de l’épaisseur.

(1) Je ne puis citer d’autres synonymies, parce que les auteurs, sous le nom de Caillaudi, ont confondu toutes les espèces.
J.-R. BOURGUIGNAT.

AETHERIA NILOTICA.

Lac Dembea et Nil Bleu (Verreaux, Joannis).

Espèce non tubifère, de couleur de feuilles mortes, à nacre intérieure blanc bleuacé bien irisée. Valves très épaisses vers la région supérieure, où l'accroissement se fait par juxtaposition. Talons de forme conico-pyramidale, de 15 à 20 centimètres de longueur, etc. (Voyez ma Monographie des Aétherias.)

Voilà donc une liste de 167 espèces abyssiniennes, liste que j'aurais pu facilement augmenter d'une quarantaine, si j'avais voulu admettre les coquilles innommées des ouvrages de Blandford et de Jickeli, ainsi que les formes douteuses ou celles d'un habitat peu certain.

III

Un mot sur l'Abyssinie (1), sur sa climatologie, etc., est

(1) Le vrai nom de ce pays est celui d'Éthiopie. C'est pour ce motif que je n'ai pas attribué aux espèces nouvelles l'appellation d'abyssinica ou d'abyssicus. Ce pays est l'ancienne Éthiopie des Grecs et des Romains. Les habitants s'appellent encore entre eux Itiopavan, mais le plus souvent ils se nomment Agaziam, d'Agazi, nom de cette contrée. Les musulmans, en haine de ce peuple chrétien, lui ont appliqué le nom injurieux d'et-Habesch (peuple bâtard), d'où on a fait habeschi, puis abexim, abassi et abyssini.

ARTICLE N° 2.
nécessaire pour faire comprendre la répartition des formes spécifiques de ce pays et pour montrer l'influence que les milieux ont pu avoir sur elles.

L'Abyssinie est un vaste plateau de forme triangulaire presque aussi étendu (1) que la France. On comprend dans ce pays la zone littorale de la mer Rouge, où se trouvent Massaouah et la baie d'Adulis, bien que cette zone soit une région basse, très chaude, d'une climatologie toute différente.

Le plateau abyssin, d'une altitude moyenne de 2000 mètres, sert de base à des sommets, dont les cimes atteignent à peu près la hauteur de celles du mont Blanc. Ce plateau, à partir de la chaîne qui court parallèlement à la mer Rouge, où, de ce côté, il domine à pic les plaines du littoral et celles du pays d'Adel, s'incline à l'ouest, en descendant en larges gradins vers les déserts de la Nubie, et, au sud-ouest, vers la vallée du Nil Bleu.

« Pour bien se faire une idée de l'aspect, pour ainsi dire convulsionné, que présente cette contrée, il faut imaginer au-dessus du premier plateau, un second, puis supérieurement un troisième, et couper ces plateaux par une foule d'entailles, inégales de profondeur et de direction. En certains lieux, ces entailles sont si nettes, si droites, qu'elles laissent, pour ainsi dire, au milieu des ravins, où coulent des eaux torrentueuses, des espèces d'îles inaccessibles (2). »

Les saisons, dans ce massif de montagnes (3), sont à l' inverse de celles de nos pays.

La saison hivernale, ou des pluies, commence au mois d'avril pour se terminer vers la fin de septembre. Les autres mois sont souvent mauvais ; il n'y a guère que les mois de décembre et de janvier où le temps est vraiment beau.

(1) L'Abyssinie a environ 240 à 250 lieues du nord au sud, et autant de l'est à l'ouest.

(2) Lefèvre, Petit et Qu. Dillon (Voy. en Abyssinie, 1839-1843).

(3) Voyez, pour la description des chaînes de montagnes, des fleuves et des lacs, les ouvrages de géographie.
Les pluies vont croissant à partir d’avril pour atteindre leur maximum en juillet et août, et décroître ensuite. « Ces pluies présentent presque tous les jours le même caractère. Dans la matinée, le ciel est pur et le soleil splendide; vers midi, les nuages s’amoncellent; le tonnerre éclate, et la pluie tombe par torrent jusqu’au soir, le lendemain la même scène recommence. »

Sur la zone comprise entre les montagnes et la mer, les phénomènes météorologiques sont tout autres. Les pluies y coïncident avec l’hiver, c’est-à-dire de novembre à mars ou avril. MM. Ferret et Galinier ont, de plus, observé que pendant la saison des pluies sur le plateau, les terres situées entre la mer et les montagnes ne reçoivent pas une goutte d’eau. Ce phénomène tient, d’après eux, à ce que la colonne d’air chaud, qui s’élève d’un sol fortement échauffé, empêche, en s’élevant, les nuages de se condenser (1).

Ce sont les pluies régulières du plateau abyssin, non moins que celles qui ont lieu dans le bassin du Nyanza, qui déterminent les crues du Nil. Ainsi, pluie sur les plateaux pendant l’été et sécheresse persistante sur la zone littorale, de même que sur toutes les régions basses qui environnent le massif; tandis qu’en hiver, pluies sur les régions basses et sécheresse sur les plateaux.

La température du plateau abyssin, dont la moyenne atteint 2000 mètres, est, d’après les observations des voyageurs, très uniforme; elle varie entre 14 et 20 degrés; elle ne descend pas au-dessous de 13 degrés, ni ne monte pas au-dessus de 25 degrés.

Bruce, pendant seize mois, a relevé la température de Gondar (2200 mètres): le minimum a été de 13° 49' au mois d’août et le maximum de 22° 17' au mois d’avril.

Lefèvre, de 1841 à 1842, a trouvé à Adowa (1900 mètres) de 16 à 25 degrés, du mois d’avril au mois de septembre. Raf-

(1) Charvet, *Del’Abyssinie*, 1882.

ARTICLE N° 2.
fray, en 1881, a constaté à Sokota (2253 mètres) 15 degrés au mois d'août.

La climatologie réalise donc, suivant l'expression du Dr Dally (1), la conception du printemps perpétuel.

Mais si le plateau abyssin a une douce température, ses vallées ou ses montagnes en ont une tout autre.

Dans les vallées, qui sont de vraies gorges à parois à pic, la température est étouffante. Dans la même journée, M. Raffray, tandis qu'il venait de constater 15 degrés à Sokota, voyait, au-dessous de cette ville, son thermomètre s'élever à 39 degrés dans la vallée du Tellaré.

Sur tout le littoral de la mer Rouge, comme dans les gorges du massif, la chaleur y est également extrême. En été, elle monte souvent, à l'ombre, à 54 degrés. À Massaouah, d'après Kaemtz (2), la moyenne de l'hiver est de 26° 7', celle du printemps 29° 5' et celle de l'automne 32 degrés ; quant à la moyenne estivale, que Kaemtz ne donne pas, je sais qu'elle dépasse 40 degrés.

Par contre, lorsqu'on s'élève sur les montagnes qui dominent le plateau, la température s'abaisse d'un façon régulière. Bruce, au pied d'une montagne du Semen, constata 14° 14', tandis qu'à son sommet elle était à zéro. Au col de l'Abouna Yousef (4024 mètres), M. Raffray, à cinq heures du matin, n'avait que 2 degrés, et que 6 degrés à midi et à six heures du soir, et ne pouvait obtenir que 14 degrés à son thermomètre exposé aux rayons du soleil.

Ainsi, sur le littoral et dans les gorges du massif, chaleur tropicale ; sur le plateau, température douce, presque uniforme ; sur les montagnes, suivant les altitudes, climatologie offrant des moyennes descendantes jusqu'à zéro.

On doit comprendre maintenant combien la climatologie d'un pareil pays doit avoir d'influence sur l'organisme des animaux.

(1) Dict. sc. médic., I, p. 248.
(2) Cours de météorologie, 1858.
D’après ses études entomologiques, M. A. Raffray a constaté quatre zones distinctes de vitalité.

« Pendant mon premier voyage en Abyssinie, dit M. Raffray (1), aussi bien que pendant un séjour de trois ans et demi, et le dernier voyage que je viens de faire en ce pays, j’ai recueilli des collections considérables, notamment d’Insectes ; j’ai noté avec soin les localités, les altitudes, faisant en quelque sorte de l’histoire naturelle le baromètre à la main. Depuis lors, les ayant examinés, comparés avec des Insectes d’autres provenances, j’ai pu arriver ainsi à déterminer en Abyssinie quatre faunes tout à fait différentes les unes des autres, suivant les altitudes.

» Ces quatre faunes sont, premièrement, celle du littoral, c’est-à-dire des régions tout à fait chaudes ; elle ne dépasse pas 800 mètres ; c’est là son point extrême.

» Cette zone est exclusivement peuplée d’animaux qu’on appelle Sahariens. J’ai constaté, en effet, que les Insectes de cette zone étaient semblables à ceux que l’on retrouve dans toute la région saharienne du nord de l’Afrique. Mais, chose remarquable et que l’on a constatée en Abyssinie comme dans tous les pays montagneux, les pentes des montagnes sont pauvres, et il n’existe, pour ainsi dire, de faunes caractérisées qu’à certains points, qui sont en quelque sorte comme la condensation, l’agglomération de la vie animale dans les montagnes. Entre ces différentes zones, règne comme une région neutre, mais non pas morte, car l’interruption n’est jamais absolue.

» Après cette première zone, qui s’étend en moyenne à une altitude de 5 à 600 mètres, il faut ensuite aller jusqu’à 1200 et 1400 mètres pour trouver une deuxième zone, celle des vallées chaudes, des plaines basses de l’Abyssinie.

» La faune de cette région a tout à fait la variété des formes et la richesse des couleurs de la faune sénégalienne.

» J’y ai rencontré une quantité considérable d’Insectes qui

(1) Voyage en Abyssinie et au pays des Gallas Raïas, 1882.

ARTICLE N° 2.
ne diffèrent pour ainsi dire pas de ceux du Sénégal; il y a même beaucoup d’espèces qui sont complètement identiques.

» Cette deuxième zone, plus étendue et plus riche que la première, mais moins importante que la troisième, va de 1200 à 2000 mètres avec une moyenne de 1400 mètres; vient ensuite la zone des hauts plateaux, celle qui est vraiment caractéristique de l’Abyssinie et qu’on pourrait appeler zone éthiopienne.

» Ces hauts plateaux vont jusqu’à 2800 mètres, mais ce sont les points extrêmes; la hauteur moyenne est de 2200 à 2400 mètres. Les Insectes qui habitent cette zone appartiennent à des types très variés: la plupart ont des formes spéciales; quelques-uns ont de la ressemblance avec ceux de l’Afrique australe; mais, ce qui m’a surtout surpris, c’est de rencontrer dans cette zone un grand nombre de types appartenant au bassin de la Méditerranée, c’est-à-dire se trouvant en Asie Mineure, en Grèce et même dans le midi de la France. Si l’on s’élève depuis l’altitude de 2800 mètres, limite extrême de cette zone, jusqu’à 3800 mètres, on en trouve une autre tout à fait différente de la précédente: on arrive à une région, que j’appelle sub-alpine, caractérisée, au point de vue botanique, par le Rhynchopetalum montanum.

» Cette zone est très pauvre; il semble que la vie animale disparaîsse avec la chaleur, les Insectes qui vivent dans cette région appartiennent presque tous à des types de notre Europe tempérée et même montagneuse. La plupart d’entre eux ont leurs équivalents dans des espèces qui vivent dans nos Alpes, dans les Pyrénées et surtout en Styrie. Il n’y a qu’un genre ou deux qui soient propres à cette région, ce sont des genres qui n’étaient pas encore connus, des formes nouvelles, mais voisines des formes européennes. Ainsi donc, par des études entomologiques qui semblent à première vue bien éloignées de la géographie, j’ai pu arriver à caractériser en Abyssinie quatre régions distinctes suivant les altitudes. »
pays nombre de fois en entomologiste zélé et consciencieux, limiter en quatre zones de vitalité les Mollusques que je viens de signaler, parce que je n'ai pas de données assez exactes sur l'habitat et l'altitude où chacune des espèces a été rencontrée; je ne le puis encore, parce que ces animaux sont en trop petit nombre, comparativement à celui des Insectes, dont le chiffre dépasse plus d'un millier, pour pouvoir baser une répartition sans erreurs.

Seulement, lorsqu'on envisage en bloc les Mollusques de ce pays, on reconnaît que le plus grand nombre sont des formes africaines, et qu'à l'exception de quelques espèces cosmopolites (Bulimus insularis, Limnaea truncatula, Melania tuberculata), ou acclimatées (Helix hamacenica, subnivellina), les autres sont des formes modifiées par des influences climatériques telles, que, sous l'action de ces influences, elles ont acquis un air de parenté incontestable, soit avec quelques-unes de nos espèces européennes, soit avec quelques autres de l'Amérique.

Ce n'est pas seulement chez les Mollusques ou chez les Insectes de l'Abyssinie, que l'on a remarqué cette tendance de *similarité spécifique* avec d'autres de continent différent; on a observé encore ce fait étonnant chez un grand nombre d'êtres africains d'autres classes. Le savant voyageur portugais, le Dr F. Welwitsch, l'a constaté, même chez les plantes des contrées équinoxiales des royaumes d'Angola et de Benguella.

« La végétation, favorisée par la grande élévation du sol et par l'abondance des eaux, prend un caractère mixte tellement prononcé, qu'on peut voir, sur un espace restreint, les formes de la flore tropicale associées aux formes du Cap et même à celles de l'Europe. Cette association d'espèces végétales appartenant à des zones et même à des continents distincts se fait particulièrement remarquer sur le plateau de Huilla (Angola), où il n'est pas rare de rencontrer des plantes de l'Inde et de la haute Abyssinie vivant en communauté avec des espèces du Cap et de l'Europe (1). »

(1) Morelet, Mollusques du voyage du Dr F. Welwitsch, 1868, p. 21.

ARTICLE N° 2.
Néanmoins, de toutes les contrées africaines étudiées jusqu'à présent, le pays abyssin est, je crois, la région privilégiée, parmi les régions zoologiques de ce continent, où les influences climatériques se font sentir avec le plus d'énergie sur l'organisme des animaux, surtout des Mollusques, de ces êtres qui ne pouvant, par leur nature, se soustraire aux milieux où ils se trouvent, sont forcés de supporter les conséquences de leur mode de vie.

Aussi voit-on dans ce pays des faits surprenants de l'influence climatérique.

Sous l'action de ces influences, plusieurs séries d'Hélices ont pris un cachet européen si prononcé, qu'on a été jusqu'à confondre quelques-unes de ces formes abyssines avec nos espèces d'Europe, et à croire, pour arriver à l'explication d'un fait si extraordinaire, à des cas de disjonction zoologique.

Ce qui est encore plus surprenant, une série de Bulimes (conjointement avec une autre d'Insectes), sous l'action de ces mêmes influences, au lieu de suivre une même ligne de similitude, a divergé dans un autre sens, pour s'assimiler un faciès américain.

Ces faits montrent que, chez les animaux mollusques, l'espèce, telle qu'elle est comprise par les spécificateurs modernes, n'existe pas, qu'il n'y a que des races qui prennent, suivant le milieu où elles vivent, le cachet que leur donne l'influence climatérique de la région qu'elles habitent.

Une conséquence d'une haute portée découle encore de ces divergences de caractères que des milieux semblables peuvent apporter chez des séries différentes.

Pourquoi, en effet, les mêmes influences ne produisent-elles pas les mêmes effets?

Pourquoi les Bulimes, de la série du Raffrayi, n'ont-ils pas pris, comme les Hélices des séries des ciliata, aculeata et autres, des caractères européens?

Pourquoi encore, ces mêmes Bulimes et ces mêmes Hélices n'ont-ils pas conservé une physionomie africaine?

Pour expliquer de telles discordances, il faut admettre que
certaines séries de formes sont plus aptes à subir l'action des influences que d'autres; il faut admettre encore que les séries ne sortent pas de la même souche, qu'elles n'ont pas, en un mot, une origine commune, parce que si elles provenaient toutes d'un même type ancestral (1), elles devraient subir dans le même sens les influences modificatrices de milieux semblables, puisque les mêmes causes produisent les mêmes effets.

Or, chez les séries abyssines, les unes restent africaines, les autres prennent un cachet européen; d'autres, enfin, une physionomie américaine.

Il faut donc reconnaître qu'à l'origine il y a eu des centres zoologiques de création, et, dans chacun de ces centres, plusieurs séries de types de forme; enfin, que ces séries de type distinct, à la suite des siècles, se sont modifiées les unes dans un sens, les autres dans un autre, en se sélectant insensiblement des caractères différents, sous l'action des influences diverses qu'elles ont eu à subir du temps, des milieux et d'une multitude de petites causes qui échappent à la perspicacité humaine.

Les animaux mollusques de l'Abyssinie proviennent, à l'exception de quelques-uns, du grand centre zoologique africain, qui s'étend, dans toute la région équatoriale de ce continent, de l'océan Indien à l'Atlantique, du Sahara aux contrées australes du Cap. Si, parmi eux, on rencontre des formes européenisées ou américainisées sous l'action des influences modificatrices des milieux, ces formes prouvent, ainsi que je viens de le dire, que dans ce centre africain, comme du reste dans tous les autres, il y a eu originairement des types distincts de création, qui depuis, par cela même qu'ils étaient de souches différentes, ont naturellement divergé en divers sens.

Les formes abyssines qui, sous l'action des influences, ont pris une physionomie européenne, sont: le Limax Jickelii; deux ou trois Vitrines, notamment la Raffrayi; presque toutes les Hélices, à un degré plus ou moins accentué, mais princi-

(1) Comme l'enseignent les darwiniens.

ARTICLE N° 2.
palement les Helix Beccarii, Abbadiana, Brucei, cryophila, Abyssinica et Raffrayi; l'Orcula imbricata, le Pupilla Bruquieri, tous les Vertigos et les Isthmia, la Cecilianella Isseli, etc.

Les équivalents de ces espèces se rencontrent en Europe, dans les régions montueuses qui s’étendent à peu près entre les 42 et 47 degrés de latitude nord, des Pyrénées aux Alpes Carniques (1) : ce sont les Vitrina major, les Helix ciliata, rupestris, pygmaea, micropleurosa, aculeata, etc.; l’Orcula doliforma; les Pupilla umbilicata, bignata, etc.; les Vertigo pygmaea, angustior, alpestris; les Isthmia muscorum (minutissima), Rivieriana, etc.

Il se trouve encore, parmi les Mollusques abyssins, tout en laissant de côté les espèces cosmopolites, quelques coquilles chez lesquelles on reconnaît une certaine tendance de ressemblance avec diverses formes asiatiques, notamment avec quelques-unes de l’Indoustan. Je mentionnerai les Helixario- nidae, les Sitala, les Thapsia, les Bulinus semnaaricus et Ethiopianus, etc., ainsi que la Cœlestele Palidilhiana, dont on vient de découvrir en Andalousie (Espagne) toute une série d’espèces (2) accidentellement importées, sans aucun doute, du temps des rois maures, à l’époque florissante où ces puissants chefs faisaient venir de l’Inde et de l’Arabie des plantes pour orner les jardins de leurs palais.

(1) La plupart de ces espèces, bien qu’on les retrouve souvent dans des contrées très distantes de ces limites, n’en sont pas moins des formes alpiques de la région que j’indique.

(2) Bourguignat, Description de diverses espèces de Cœlestele et de Pala- dilhia découvertes en Espagne par le Dr G. Servain. Angers, 1880.
Quant à tous les autres Mollusques de cette région, tels que ceux des genres Succinea, Raffraya, Pachnodus, Limicolaria, Opeas, Beccaria, Subulina, Cleopatra, Meladomus, Ampullaria, Mutela, Ætheria, etc., ils sont franchement africains.

En résumé, la faune malacologique de l’Abyssinie est celle du grand centre zoologique de l’Afrique.

Si cependant, parmi ses espèces, on en rencontre un certain nombre dont l’aspect, à première vue, semble dénoter une origine étrangère, cette faune n’en reste pas moins essentiellement africaine, parce que ces espèces pseudo-étrangères ne sont que le résultat de l’action d’une climatologie qui leur a imprimé le cachet de celles qui vivent dans les mêmes conditions en Europe, en Asie et en Amérique.

IV

Je suis le premier, je crois, qui ait donné, il y a vingt ans, un aperçu sur la répartition des êtres à la surface du continent africain.

En 1866, le Dr Grisebach, professeur à Gottingue, a fait connaître une répartition botanique à peu de chose près semblable à celle que j’avais enseignée en 1864. Depuis, M. Morelet, en 1868, a publié un fort bon travail d’ensemble sur les faunes zoologiques de ce continent; enfin, plus récemment, MM. Martens, Jickeli et autres ont encore, dans des faunes particulières, apporté le résultat de leurs études et de leurs méditations.

Il ressort de tous ces travaux que le continent africain se divise en quatre régions :

1° Celle du nord, ou méditerranéenne, qui s’étend du Maroc à la presqu’île du Sinai;

2° Celle des déserts du Sahara, qui, de l’Atlantique jusqu’au
Nil, se développe sur une étendue de près de 800 lieues sur une profondeur moyenne de 400 du nord au sud ;

3° Celle du centre, qui comprend toute la surface du continent, du Sahara aux contrées australes du Cap ;

4° Enfin, celle du Cap, ou de Natal, qui occupe l’extrémité sud du continent.

Ces régions, en exceptant celle du Sahara, qui ne possède pas de faune, correspondent aux grandes divisions zoologiques de l’Afrique.

On sait que notre faune européenne n’est qu’une faune d’acclimatation ; que cette faune, à partir du grand plateau central de l’Asie, s’est propagée jusqu’aux rivages de l’Atlantique par la grande ligne de montagnes qui, de la Perse et du Caucase, s’allonge presque en ligne droite jusqu’à l’Océan par les chaînes du Taurus, des Balkans, des Alpes et des Pyrénéées.

Les malacologistes savent également qu’au nord de cette grande zone montueuse les espèces ont un immense aréa d’extension, puisque la plupart d’entre elles s’étendent, sans variations sensibles, jusqu’aux contrées septentrionales de l’Europe ; ils savent encore qu’au midi de cette zone d’acclimatation, chacune des espèces, occupant la plupart un très petit espace, se trouve, pour ainsi dire, localisée dans un rayon fort restreint.

J’ai donné autrefois l’explication de ces différences d’extension.

On sait, en outre, qu’au sud de cette zone d’acclimatation, les espèces, sous l’action des milieux, se sont multipliées à l’infini en formes diverses, et qu’en se multipliant, elles ont formé des séries de types caractéristiques de chacune des régions où elles vivent.

Ainsi les séries des *Helix guttata*, des *Balimus labrosus*, des *Chondrus ovularis* pullulent dans les vastes pays de l’Asie occidentale ; les Hélices *campyléennes*, non moins que celles des groupes de la *muralis*, *sicana* et autres, dans les péninsules turco-hellénique et italique ; enfin les nombreuses
J.-R. BOURGUIGNAT.

formes d'Helix balearica, lactea, etc., dans les contrées du sud des Pyrénées.

C'est par la prédominance de certaines séries de formes, comme celles que je viens de citer, que l'on est parvenu à reconnaître dans le système européen, trois sous-centres de création, ou pour mieux dire de modification, savoir :

1° Le sous-centre taurique, qui s'étend depuis le Caucase (y compris la Crimée), sur l'Anatolie tout entière, la Perse, le Turkestan, la Mésopotamie, la Syrie et même l'Arabie;

2° Le sous-centre alpique, qui comprend au sud les deux grandes péninsules grecque et italienne, et dont les formes ont radié au nord sur toute l'Europe;

3° Le sous-centre hispanique, spécial à l'Espagne et au Portugal, qui n'a fait sentir son influence, au nord des Pyrénées, que sur quelques contrées méridionales de la France.

En dehors de ces sous-centres, il existe encore sur tout le pourtour de la Méditerranée un cordon d'espèces littorales qui, sous l'action de l'influence marine, est commun à chacun d'eux.

Or toute la partie nord du continent africain n'est peuplée que d'espèces du système européen, appartenant, en plus grande partie, aux sous-centres hispanique et taurique, et aux espèces littorales méditerranéennes.

Dans le Maroc, l'Algérie et la Tunisie, dominent les séries de type hispanique. Quelques formes alpiques apparaissent néanmoins dans la province de Constantine et dans la Régence.

A partir de la Tunisie, règnent les formes littorales sur toute la côte, jusqu'au delta du Nil.

En Égypte, se montrent les formes tauriques. Toute la faune terrestre de ce pays, en effet, provient des contrées syriennes.

Cette influence taurique se fait sentir, à l'intérieur, à peu près jusqu'en Nubie, où elle disparaît, tandis que sur le bord des côtes, elle descend le long du littoral de la mer Rouge et du golfe d'Aden jusqu'à l'extrémité du cap Gardafui (1).

(1) Voyez mes Mollusques du pays des Comalis, 1882.

ARTICLE N° 2.

C’est au sud de cette immense région désertique que commence vraiment l’Afrique zoologique, et que se montre le grand centre de création de ce continent.

Ce centre, caractérisé par tous ces genres et par ces espèces que les malacologistes connaissent, se développe, de l’Atlantique à l’océan Indien, sur toute la surface du continent jusqu’aux terres australes de Natal et du Cap, englobant dans son étendue la région des grands lacs et projetant ses espèces par le cours du Nil jusqu’à la Méditerranée.

L’Égypte a donc une faune fluviale essentiellement africaine.

C’est dans ce grand centre zoologique qu’est comprise l’Abyssinie.

Vers l’extrémité sud de l’Afrique, apparaît un autre centre zoologique, peu accentué il est vrai, malgré tout suffisamment caractérisé pour qu’on ne puisse le confondre avec le centre africain.

Enfin, le long des côtes orientales du continent, on constate la présence de nombreuses formes d’une faune étrangère, celles du centre malgache, qui, depuis la latitude de Madagascar, se sont propagées par voie d’acclimatation jusque dans le pays des Comalis.

Telle est, à grands traits, la répartition des Animaux Mollusques à la surface du continent africain.
EXPLICATION DES FIGURES.

PLANCHE 7.

Vitrina Raffrayi, Bourguignat. — 1, coq. vue en dessus; — 2, vue en dessous; — 3, vue de face.

Vitrina Herbini, Bourguignat. — 4, coq. vue de face; — 5, vue en dessous; — 6, vue en dessus.

Vitrina Milne Edwardsiana, Bourguignat. — 7, coq. vue en dessus; — 8, vue de face; — 9, vue en dessous.

Vitrina Bupesseliana, Pfeiffer. — 10, coq. de grandeur naturelle, vue de profil, avec l'extrémité du corps de l'animal; — 11, queue vue en dessus.

Helixarion Raffrayi, Bourguignat. — 12, coq. vue de face; — 13, coq. avec son animal; — 14, coq. vue en dessous.

Sitala Raffrayi, Bourguignat. — 15, coq grossie vue de face; — 16, la même de grandeur naturelle.

Thapsia euryomphala, Bourguignat. — 17, coq. de grandeur naturelle, vue de face; — 18, coq. grossie, vue en dessus; — 19, la même grossie, vue de face; — 20, la même en dessous.

Helix Raffrayi, Bourguignat. — 21, coq. grossie, vue en dessous; — 22, la même en dessus; — 23, la même de face; — 24, la même de grandeur naturelle, vue de face.

Helix Herbini, Bourguignat. — 25, coq. vue en dessus; — 26, la même, de face; — 27, la même en dessus; — 28, fragment très grossi du dernier tour pour montrer la disposition des stries et des poils.

Helix Galinieriana, Bourguignat. — 30, fragment très grossi du dernier tour; — 31, coq. grandeur naturelle, vue en dessous; — 32, la même, vue de face; — 33, la même en dessus.

Helix Ferretiana, Bourguignat. — 34, coq. grandeur naturelle, vue en dessus; — 35, la même de face; — 36, fragment très grossi du dernier tour.

PLANCHE 8.

Helix Ferretiana, Bourguignat. — 37, coq. vue en dessous.

Helix Achilli, Bourguignat. — 38, coq. grandeur naturelle, vue en dessus; — 39, la même de face; — 40, la même en dessous.

Helix komacenicana, Raffray. — 41, coq. grandeur naturelle, vue de face; — 42, la même en dessous; — 43, la même en dessus.

Helix subniveellina, Bourguignat. — 44, coq. de grandeur naturelle, vue de face; — 45, la même en dessus; — 46, la même en dessus.

Succinea ethiopica, Bourguignat; — 47, coq. grandeur naturelle, vue de face; — 48, la même grossie, de face.

Caillaudia Letourneuxi, Bourguignat. — 49, coq. grandeur naturelle, de face; — 50, la même grossie, en dessus; — 51, la même grossie, de face; — 52, la même grossie, en dessous.

ARTICLE N° 2.
Succinea rugulosa, Morelet. — 53, coq. grandeur naturelle, de face; — 54, la même grossie, de face.
Succinea Poirieriana, Bourguignat. — 55, coq. grandeur naturelle, de face; — 56, la même grossie, de face.
Succinea adowensis, Bourguignat. — 57, coq. grandeur naturelle, de face; — 58, la même grossie, de face.

PLANCHE 9.

Bulimus abyssinicus, Pfeiffer. — 59, coq. grandeur naturelle, de face.
Bulimus Galinierianus, Bourguignat. — 60, coq. grandeur naturelle, de face.
Bulimus Lejeanianus, Bourguignat. — 61, coq. grandeur naturelle, de face.
Bulimus Hemprichi, Jickeli. — 62, coq. grandeur naturelle, de face.
Bulimus Simonis, Bourguignat. — 63, coq. grandeur naturelle, de face.
Subulina Perrieriana, Bourguignat. — 64, coq. grandeur naturelle, de face.
Subulina Munzingeri, Jickeli. — 65, sommet très grossi; — 66, coq. grossie, de face; — 67, la même, grandeur naturelle, de face.
Subulina Mabiliiana, Bourguignat. — 68, coq. grandeur naturelle, de face; — 69, la même grossie, de face.
Bulimus subeminulus, Bourguignat. — 70, coq. grossie, de face; — la même, grandeur naturelle.
Bulimus macroconus, Bourguignat. — 72, coq. grandeur naturelle, de face; — 73, la même grossie.
Bulimus Herbini, Bourguignat. — 74, coq. grandeur naturelle, de face.
Bulimus Achilli, Bourguignat. — 75, fragment très grossi du dernier tour; — 76, coq. grandeur naturelle, de face.
Bulimus Raffrayi, Bourguignat. — 77, fragment très grossi du dernier tour; — 78, coq. grandeur naturelle, de face.

PLANCHE 10.

Bulimus abbadianus, Bourguignat. — 79, coq. grandeur naturelle, de face.
Bulimus Tamisierianus, Bourguignat. — 80, coq. grandeur naturelle de face.
Pachnodus Rochebrunianus, Bourguignat. — 81, coq. grandeur naturelle de face.
Abbadia ethiopica, Bourguignat. — 82, coq. grandeur naturelle, de face; — 83, la même très grossie.
Raffraya Milne Edwardsi, Bourguignat. — 84, coq. très grossie, de face; — 85, fragment très grossi du dernier tour; — 86, dernier tour grossi, vu de profil; — 87, coq. grandeur naturelle, de face.
Ennea denticulata, var. Hamacenica. — 89, ouverture très grossie, de face.
Ennea Raffrayi, Bourguignat. — 88, coq. grandeur naturelle, de face; — 90, dernier tour très grossi, de profil; 91, coq. très grossie, de face.
Limnea Athiopica, Bourguignat. — 92, coq. grandeur naturelle, de face; — 93, la même, de profil.
Limnea acroza, Bourguignat. — 94, coq. grandeur naturelle, de face.
J.-R. BOURGUIGNAT.

Limnœa Alexandrina, Bourguignat. — 95, coq. grandeur naturelle, de profil; — 96, la même, de face.
Limnœa Raffrayi, Bourguignat. — 97, coq. grandeur naturelle, de face; — 98, la même, de profil.
Limnœa africana, Ruppell. — 99, coq. grandeur naturelle, de face.
Limnœa Caillaudi, Bourguignat. — 100, coq. grandeur naturelle, de profil; — 101, la même, de face.

Planche 11.

Carte malaco-stratigraphique de l'Afrique.
TABLE

DES NOMS D'ESPÈCES ET DES APPELLATIONS SYNONYMES.

<table>
<thead>
<tr>
<th>Species</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbadia athiopica</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Achatina Antinorii</td>
<td>Morelet</td>
</tr>
<tr>
<td>— cyanostoma</td>
<td>Ruppell</td>
</tr>
<tr>
<td>— gracilis</td>
<td>Benson</td>
</tr>
<tr>
<td>— Heuglini</td>
<td>Martens</td>
</tr>
<tr>
<td>— montana</td>
<td>Martens</td>
</tr>
<tr>
<td>— Ruppelli</td>
<td>Krauss</td>
</tr>
<tr>
<td>Acicula Isseli</td>
<td>Jickeli</td>
</tr>
<tr>
<td>— Munzingeri</td>
<td>Jickeli</td>
</tr>
<tr>
<td>Ampullaria aegyptiaca</td>
<td>Ehrenberg</td>
</tr>
<tr>
<td>— Bolteniana</td>
<td>Philippi</td>
</tr>
<tr>
<td>— carinata</td>
<td>Lamarck</td>
</tr>
<tr>
<td>— kordofana</td>
<td>Parreyss</td>
</tr>
<tr>
<td>— ovata</td>
<td>Savigny</td>
</tr>
<tr>
<td>Ancylus abyssinicus</td>
<td>Jickeli</td>
</tr>
<tr>
<td>— compressus</td>
<td>Jickeli</td>
</tr>
<tr>
<td>— hamacenicus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>— fluviatilis</td>
<td>Blandford</td>
</tr>
<tr>
<td>Anodonta rubens</td>
<td>Lamarck</td>
</tr>
<tr>
<td>— rubens</td>
<td>Caillaud</td>
</tr>
<tr>
<td>Auricula Bronii</td>
<td>Philippi</td>
</tr>
<tr>
<td>— nucleus</td>
<td>Ferussac</td>
</tr>
<tr>
<td>— subula</td>
<td>Quoy et Gaimard</td>
</tr>
<tr>
<td>Beccaria Isseli</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Buccinum truncatum</td>
<td>Müller</td>
</tr>
<tr>
<td>Bulimus Fabianus</td>
<td>Gredler</td>
</tr>
<tr>
<td>— fallax (pars)</td>
<td>Jickeli</td>
</tr>
<tr>
<td>— Hemprichi</td>
<td>Jickeli</td>
</tr>
<tr>
<td>— Olivieri</td>
<td>Jickeli</td>
</tr>
<tr>
<td>Bulimus Abbadianus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>— abyssinicus</td>
<td>Pfeiffer</td>
</tr>
<tr>
<td>— abyssinicus, var. minor</td>
<td>Morelet</td>
</tr>
<tr>
<td>— Achilli</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>— ethiopicus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>— Astierianus</td>
<td>Dupuy</td>
</tr>
<tr>
<td>— Caillaudi</td>
<td>Pfeiffer</td>
</tr>
<tr>
<td>— cerealis</td>
<td>Paladilhe</td>
</tr>
<tr>
<td>Species</td>
<td>Author</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Bulimus cœnopictus</td>
<td>Pfeiffer</td>
</tr>
<tr>
<td>concentricus</td>
<td>Reeve</td>
</tr>
<tr>
<td>Doria</td>
<td>Issel</td>
</tr>
<tr>
<td>eminulus</td>
<td>Morelet</td>
</tr>
<tr>
<td>euphraticus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Galinierianus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>gemmula</td>
<td>Benson</td>
</tr>
<tr>
<td>gracilis</td>
<td>Hutton</td>
</tr>
<tr>
<td>guinaicus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>guineensis</td>
<td>Jonas</td>
</tr>
<tr>
<td>habessinicus</td>
<td>Rupellii</td>
</tr>
<tr>
<td>Hemprichi</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Herbini</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Heuglini</td>
<td>Morelet</td>
</tr>
<tr>
<td>indicus</td>
<td>Pfeiffer</td>
</tr>
<tr>
<td>insularis</td>
<td>Albers</td>
</tr>
<tr>
<td>Jickelianus</td>
<td>Nevill</td>
</tr>
<tr>
<td>Kursiensis</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>lamprodermum</td>
<td>Morelet</td>
</tr>
<tr>
<td>lardeus</td>
<td>Pfeiffer</td>
</tr>
<tr>
<td>Lejeaniannus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>leptocochlias</td>
<td>Jonas</td>
</tr>
<tr>
<td>macroconus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>maharasicus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>marebiensis</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>milevianus</td>
<td>Raymond</td>
</tr>
<tr>
<td>Olivieri</td>
<td>Pfeiffer</td>
</tr>
<tr>
<td>putillus</td>
<td>Shuttleworth</td>
</tr>
<tr>
<td>Raffrayi</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Reboudi</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Ruppellianus</td>
<td>Pfeiffer</td>
</tr>
<tr>
<td>Samavaensis</td>
<td>Mousson</td>
</tr>
<tr>
<td>sennaaricus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>sennaariensis</td>
<td>Parreyss</td>
</tr>
<tr>
<td>Simonis</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>subeminulus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Tamisierianus</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>vermiformis</td>
<td>Paladilhe</td>
</tr>
<tr>
<td>Bythnia sennaariensis</td>
<td>Martens</td>
</tr>
<tr>
<td>Cecilianella Isselii</td>
<td>Paladilhe</td>
</tr>
<tr>
<td>Caillandia angulata</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Letourneuri</td>
<td>Bourguignat</td>
</tr>
<tr>
<td>Carychium filicosta</td>
<td>Morelet</td>
</tr>
<tr>
<td>Cassidula labrella</td>
<td>Pfeiffer</td>
</tr>
<tr>
<td>nucleus</td>
<td>Beck</td>
</tr>
<tr>
<td>nucleus</td>
<td>Morch</td>
</tr>
<tr>
<td>Clausilia dystherata</td>
<td>Jickeli</td>
</tr>
</tbody>
</table>
Clausilia sennaarica, Bourguignat. .. 74, 117
— sennaariensis, Pfeiffer... 74, 117
Cleopatra bulimoides, Jickeli.. 130
Celestele arabica, Bourguignat. .. 120
— Paladiliana, Nevill... 120
Corbicula consobrina, Adams... 133
Cyclus capensis, Jickeli.. 133
— ferruginea, Krauss.. 135
 Cyclostoma carinata, Olivier... 132
— unicolor, Olivier... 130
Cyrena consobrina, Caillaud... 133
Digyreidum sennaaricum, Letourneux.................................. 130
Ætheria Caillaudi, Ferussac... 137
— nilotica, Letourneux... 138
— tubifera, Sowerby.. 137
Ennea denticulata, Morelet.. 76, 118
— var. hamacenica, Bourguignat.. 76, 118
— var. quinqueplicata, Jickeli... 76, 118
— var. Hildbrandtii, Jickeli... 76, 118
— papillifera, Jickeli.. 76, 118
— Raffrayi, Bourguignat.. 77, 118
Eupera ferruginea, Bourguignat.. 135
— Jickelii, Bourguignat... 134
— Letourneuxi, Bourguignat... 134
— Moquiniana, Bourguignat... 134
— parasitica, Bourguignat.. 133
Francesia scalaris, Paladilhe.. 120
Glandina cyanostoma, Philippi... 120
Glessula montana, Jickeli.. 120
Helix Abbadiana, Bourguignat.. 29, 110
— Achilli, Bourguignat... 29, 38, 111
— abyssinica, Jickeli.. 29, 35, 111
— Beccarrii, Jickeli.. 28, 110
— Bolteniana, Chemnitz.. 132
— Brocchii, Jickeli... 29, 110
— Brucei, Jickeli... 29, 111
— ciliata, Morelet.. 28, 110
— Combesiana, Bourguignat.. 28, 30, 110
— cryophila, Martens... 29, 111
— cryophila, Morelet.. 29, 110
— Darnaudi, Pfeiffer.. 29, 39, 112
— Darnaudi (pars), Jickeli... 29, 36, 111
— Ferretiana, Bourguignat.. 28, 31, 110
— Galinierviana, Bourguignat... 28, 33, 110
— Hamacenica, Raffray... 29, 40, 112
— Herbini, Bourguignat... 28, 32, 110
— Heuglini, Martens.. 29, 39, 112
Helix Isseli, Morelet. .. 29, 36, 111
- Lejeaniana, Bourguignat. ... 29, 36, 111
- membranacea, Jickeli. .. 15, 107
- Mozambicensis, Pfeiffer. .. 107
- nucleus, Gmelin. .. 124
- oleosa, Pfeiffer. .. 12, 106
- pilifera, Martens. .. 28, 29, 110
- pilifera, Jickeli. ... 28, 30, 110
- Raffrayi, Bourguignat. .. 29, 35, 111
- rivularis, Martens. ... 29, 35, 111
- similaris, Ferussac. .. 28
- Steudneri, Jickeli. .. 15, 107
- subnivellina, Bourguignat. ... 29, 41, 112
Helixarion lymphaseus, Morelet. 9, 105
- pallens, Morelet. .. 9, 106
- Raffrayi, Bourguignat. .. 9, 106
Homorus cyanostoma, Albers. .. 120
Hyalina abyssinica, Jickeli. ... 11, 106
- vesti, Jickeli. ... 12, 106
Iridina angustata, Sowerby. .. 136
- nilotica, Ferussac. .. 136
Isidora Forskali, Ehrenberg. ... 98, 127
Isthmia abyssinica, Bourguignat. .. 117
- Blandfordi, Bourguignat. ... 117
- Haygennackeri, Bourguignat. ... 116
- laede, Bourguignat. .. 117
- Reinhardtli, Bourguignat. .. 116
- Schilleri, Bourguignat. .. 117
- similis, Bourguignat. ... 117
Lanistes carinatus, Pfeiffer. ... 132
- Olivieri, Denis de Montfort. ... 132
- ovum, var. elatior, Pfeiffer. .. 132
Lamodonta affinis, Jickeli. .. 124
- amplicata, Jickeli. .. 123
- Bronii, Jickeli. ... 123
- granum, Jickeli. .. 123
- oblonga, Jickeli. .. 123
Limax Jickeli, Heynemann. ... 105
- nucleus, Martyn. .. 124
Limicolaria Beccarri, Morelet. ... 119
- Bourguignati, Paladilhe. ... 119
- flammea, var. sennaariensis, Jickeli. 119
- Henglini, Jickeli. .. 119
- Ruppelliana, Shuttleworth. .. 118
- sennaarica, Bourguignat. .. 118
- sennaariensis, Shuttleworth. ... 118
Limnea acroza, Bourguignat. ... 90, 125

ARTICLE N° 2.
MALACOLOGIE DE L'ABYSSINIE.

Limnaea *œthiopica*, Bourguignat. .. 94, 125
— *africana*, Ruppell .. 95, 136
— *Alexandrina*, Bourguignat ... 92, 125
— *Clairaudia*, Bourguignat .. 89, 125
— *exserta*, Bourguignat ... 90, 125
— *natalensis*, var. *exserta*, Martens 90, 125
— *peregra*, Jickeli ... 97, 126
— *Raffrayi*, Bourguignat .. 93, 125
— *truncatula*, Goupil .. 98, 126
— *truncatula*, Jickeli ... 97, 126
— *Umlaasiiana*, Nevill .. 126

Limnaeus *Umlaasiianus*, Kuster. .. 97

Limosina ferruginea, Jickeli ... 133, 134

Martensia mossambicensis, Semper 107

Meladomus Boltenianus, Bourguignat 132
— *elatior*, Bourguignat ... 132

Melampus Ehrenbergianus, Morelet 123
— *erythraeus*, Morelet .. 122
— *fasciatus*, Morelet ... 123
— *granum*, Morelet ... 123
— *Massaunicus*, Ehrenberg ... 122
— *siamensis*, Martens ... 123

Melania abyssinica, Ruppell ... 102, 131
— *egyptiaca*, Benson ... 130
— *Dembeana*, Ruppell ... 102, 131
— *tuberculata*, Bourguignat ... 102, 131

Microcystis abyssinicus, Jickeli 12, 106
— *Vesti*, Jickeli ... 12, 106

Mutela angustata, Jickeli ... 136
— *nilotica*, Jickeli .. 136

Nerita tuberculata, Müller ... 102, 131
Neritina africana, Parreyss .. 132
— *Dongolensis*, Ehrenberg ... 132
— *nilotica*, Reeve ... 132

Opeas gracilis, Albers .. 119

Orcula imbricata, Bourguignat ... 71, 115

Pachnodus Rochebrunianus, Bourguignat 79, 148

Patadina abyssinica, Martens ... 130
— *ethiops*, Reeve ... 130
— *biangulata*, Kuster ... 130
— *bulimoides*, Olivier .. 130
— *polita*, Frauenfeld .. 130
— *sennaariensis*, Parreyss .. 130
— *unicolor*, Deshayes ... 130

Physa abyssinica, Martens ... 127
— *contorta*, Michaud ... 126
— *Forskali*, Bourguignat .. 98, 126

ANN. SC. NAT., ZOOL., MARS 1883. XV. 14 — ART. N° 2
Physa Fischeriana, Bourguignat.. 127
— natalensis, Krauss... 98, 126
— natalica, Bourguignat... 98, 126
— Schackoi, Jickeli.. 126
— sericina, Jickeli... 98, 126
— tropica, Nevill.. 126
Physopsis abyssinica, Jickeli.. 127
— eximia, Bourguignat.. 127
Pisidium parasiticum, Parreyss.. 133
Pisum ferrugineum, Deshayes... 135
Planorbis abyssinicus, Jickeli.. 128
— Adowensis, Bourguignat... 101, 128
— elthiopicus, Bourguignat... 128
— costulatus, var. Jickeli.. 128
— Herbini, Bourguignat.. 101, 127
— natalensis, Blandford.. 127
— RupPELLI, Dunker... 100, 127
— RupPELLI (pars), Jickeli... 101, 127
— Stelzeri, Martens... 128
Plecotrema nords, Morelet... 124
— rupax, Dorhn.. 124
Pupa abyssinica, Reinhardt.. 117
— bisulcata, Jickeli... 73, 116
— Blandfordi, Jickeli... 117
— Bruguierei, Jickeli.. 71, 115
— canopicla, Hutton.. 61
— cylindrica, Hutton.. 66
— edentula, var. minor, Martens.. 117
— fontana (pars), Jickeli.. 71, 115
— fontana, var. globulosa, Jickeli.................................. 72, 116
— Haggenmacheri, Jickeli... 116
— Heuglini, Krauss... 71, 115
— imbricata, Jickeli... 71, 115
— insularis, Ehrenberg.. 65, 114
— Klunzingeri, Jickeli.. 116
— lardea, Jickeli.. 117
— Pleinesi, Jickeli.. 116
— pulia, Gray... 65
— putillus, Pfeiffer.. 62
— Reinhardtli, Jickeli.. 116
— Schilleri, Jickeli... 117
— senegalensis, Morelet.. 62
— sennaariensis, Pfeiffer... 59, 62, 114
— similis, Jickeli.. 117
— umbilicata, Martens.. 71, 115
Pupilla Bruguierei, Bourguignat.................................... 71, 115
— globulosa, Bourguignat... 72, 116

ARTICLE N° 2.
MALACOLOGIE DE L'ABYSSINIE.

Pupilla Raffrayi, Bourguignat ... 71, 115
Raffraya Mitne Edwardsi, Bourguignat 67, 115
Segmentina angusta, Jickeli .. 129
Sitala Raffrayi, Bourguignat .. 14, 106
— Stenneri, Bourguignat .. 167
Spatha Caillaudi, Martens .. 136
Sphaerium subcapense, Bourguignat 133
Spiraxis gracilis, Blandford .. 119
Stenogyra angusta, Jickeli ... 121
— gracilis, Martens .. 119
— Munzingeri, Jickeli .. 82, 122
— suaveolens, Jickeli .. 82, 121
— subulata, Jickeli ... 122
— variabilis, Jickeli ... 82, 121
— vernicosa, Jickeli ... 120
Subulina angustata, Jickeli ... 121
— Antinorii, Bourguignat .. 121
— Antinorii, Jickeli ... 120
— cyanostoma, Beck .. 120
— gracilis, Jickeli .. 119
— Isseli, Jickeli .. 119
— Jickelii, Bourguignat .. 121
— Lhotellerii, Bourguignat .. 82, 121
— Mabilliana, Bourguignat ... 83, 122
— Munzingeri, Bourguignat ... 82, 122
— Perrieriana, Bourguignat ... 81, 121
— suaveolens, Jickeli .. 82, 121
— subulata, Jickeli ... 122
— variabilis, Jickeli ... 82, 121
— variabilis, var. B, Jickeli .. 82, 121
— variabilis, var. C, Jickeli .. 121
— vernicosa, Bourguignat .. 120
Succinea Adowensis, Bourguignat 26, 109
— ethiopica, Bourguignat ... 27, 109
— badia, Martens .. 24, 109
— limicola, Morelet .. 109
— Poierriana, Bourguignat .. 25, 109
— rugulosa, Morelet .. 24, 109
— striata (pars), Jickeli .. 26, 109
— striata, var. limicola, Jickeli 109
Thapsia abyssinica, Bourguignat 11, 12, 106
— euryomphala, Bourguignat .. 12, 106
— oleosa, Bourguignat ... 12, 106
— Vestl, Bourguignat .. 42, 106
Theodoxia africana, Bourguignat 132
Trochomorpha mozambica, Bourguignat 107
— mozambicensis, Albers ... 107
<table>
<thead>
<tr>
<th>Species</th>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trochonanina mozambicensis</td>
<td>Mousson</td>
<td>107</td>
</tr>
<tr>
<td>Truncatella semicostulata</td>
<td>Jickeli</td>
<td>129</td>
</tr>
<tr>
<td>— teres, Pfeiffer</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>Unio abyssinicus, Martens</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>— œneus, Jickeli</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>— Dembeæ, Rossmüssler</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>— Dembeæ (pars), Jickeli</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>— Jickelii, Bourguignat</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>— tricolor, Martens</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Vertigo bisulcata, Bourguignat</td>
<td></td>
<td>73, 116</td>
</tr>
<tr>
<td>— Klunzingeri, Bourguignat</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>— Pleimesi, Bourguignat</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>Vitrina abyssinica, Rupell</td>
<td></td>
<td>16, 107</td>
</tr>
<tr>
<td>— Caillaudi, Morelet</td>
<td></td>
<td>17, 108</td>
</tr>
<tr>
<td>— conquisita, Jickeli</td>
<td></td>
<td>17, 108</td>
</tr>
<tr>
<td>— Helicoidæ, Jickeli</td>
<td></td>
<td>17, 108</td>
</tr>
<tr>
<td>— Herbini, Bourguignat</td>
<td></td>
<td>22, 109</td>
</tr>
<tr>
<td>— Hiæns, Rupell</td>
<td></td>
<td>16, 107</td>
</tr>
<tr>
<td>— Isseli, Morelet</td>
<td></td>
<td>17, 108</td>
</tr>
<tr>
<td>— Isseli, Jickeli</td>
<td></td>
<td>17, 108</td>
</tr>
<tr>
<td>— Jickelii, Krauss</td>
<td></td>
<td>16, 107</td>
</tr>
<tr>
<td>— mamillata, Martens</td>
<td></td>
<td>17, 108</td>
</tr>
<tr>
<td>— Martensi, Jickeli</td>
<td></td>
<td>17, 108</td>
</tr>
<tr>
<td>— Milne Edwardsiana, Bourguignat</td>
<td></td>
<td>18, 108</td>
</tr>
<tr>
<td>— Raffrayi, Bourguignat</td>
<td></td>
<td>20, 108</td>
</tr>
<tr>
<td>— Riepiana, Jickeli</td>
<td></td>
<td>17, 108</td>
</tr>
<tr>
<td>— Rupelliánana, Pfeiffer</td>
<td></td>
<td>16, 20, 107</td>
</tr>
<tr>
<td>— semirugata, Jickeli</td>
<td></td>
<td>17, 20, 107</td>
</tr>
<tr>
<td>Vivipara abyssinica, Jickeli</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>— unicolor, Bourguignat</td>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>
ERRATA

Page 3, note n° 1, lire : planche 4, au lieu de planche 1.
Pages 13, 14, 24, 25, 36 et 40 (en note), lire : planches 5 et 6, au lieu de 2 et 3.
Page 5, avant-dernière ligne, lire : sur le sommet du bord frontal duquel, au lieu de sur le sommet du bord frontal, où.
Page 8, lignes 10 et 11, lire : extérieur, au lieu de intérieur ; et intérieur, au lieu de antérieur.
Page 12, ligne 16, lire : tubiforme, au lieu de tabiforme.
Page 21. Le renvoi (1) de la ligne 7 doit être reporté à la ligne 8, après le deuxième crustacé.
Page 25, ligne 11, lire : en dessus au lieu de en dessous.
Page 23, note n° 1, lire : pl. 4, au lieu de pl. 1.
Page 41, ligne 37, lire : p. 63, au lieu de p. 69.
Page 43, ligne 28, lire : Artrotrogus, au lieu de Artologus.
Page 44, ligne 19, lire : clýpciforme, au lieu de clýpciforme.
Pages 45 et suivantes, dans l'explication des planches, lire : pl. 4, 5 et 6, au lieu de Pl. 1, 2 et 3.
Page 45, fig. 2, lire : en dessus, au lieu de en dessous.
Page 47, l'explication de la figure 22 se rapporte à la figure 23.

Planche 6. Substituer au n° 4 celui de 11; au 5 celui de 10; au 23 celui de 17; au 10 celui de 6; au 11 celui de 4; au 17 celui de 23; et au 6 celui de 5.

Explication des planches.

N° 22, après les mots : petite cavité, ajoutez : « dans laquelle sont contenus des appendices plats et ronds qui, en se combinant, peuvent saisir et se maintenir sur des objets. »

N° 23. « Siphon d'un jeune Pandare tel qu'il est et sans être comprimé; l'extrémité de son siphon présente, autour de son orifice, un bord saillant et arrondi. » (Les textes de ces deux numéros ont été confondus.)
CRUSTACÉS RARES OU NOUVEAUX
DES CÔTES DE FRANCE

Par M. HÉSSE.

(Trente-troisième article.)

Description de plusieurs Crustacés parasites nouveaux de l'ordre des Siphonostomiens, de la famille des Peltocéphaliens, appartenant au genre Nogague, Lépimacre (nouveau), Pandare et Cécrops, tous décrits et dessinés d'après des individus vivants.

Les Crustacés qui font l'objet de ce mémoire, forment dans leur espèce une catégorie à part; ils vivent exclusivement sur des Poissons qui ont une peau extrêmement épaisse et qui est, de plus, recouverte de petites écailles très rapprochées, qui en rendent la pénétration très difficile. Aussi ont-ils été dotés d'un système buccal d'une forme spéciale, qui consiste en un tube rigide et accuminé à son extrémité, qu'ils enfoncent assez profondément dans les chairs pour y puiser les fluides nécessaires à leur alimentation.

Ces Crustacés appartiennent à l'ordre des Siphonostomiens, et les Poissons sur lesquels ils vivent, aux Squalidés.

§ 1. — Description.

Genre NOGAGUE (Léach.) (1).

Nogague de l'Aiguillat, Nogague Spinacii (Nobis), Achantias (de Cuvier).

Mâle inconnu.

Femelle (2). — Elle a environ 5 à 6 millimètres de longueur

(1) Ce n'est pas par erreur, mais, au contraire, intentionnellement, que je place, parmi les Pandariens, le genre Nogague, qui jusqu'ici a toujours figuré avec les Caligiens. Je me propose de démontrer plus tard que c'est à tort qu'il a été rangé dans cette catégorie.

(2) PI. 4, fig. 1.

ANN. SC. NAT., ZOOL. 14. — ART. N° 3.
sur 4 de largeur; sa carapace scutiforme est mince, transparente et légèrement bombée. Elle est presque aussi longue que large, et elle est marquée, en dessus, de plusieurs sillons linéaires qui indiquent les divisions dont elle est formée et qui ont de grandes Analogies avec celles que présente la carapace des Caligiens et qui, sans doute, auront contribué à les faire ranger parmi ceux-ci.

Le bouclier céphalothoracique, dont le bord supérieur forme une pointe arrondie, est précédé de deux lames frontales, plates, qui sont très étroites à l'endroit de leur réunion, mais qui vont en s'élargissant à leur extrémité latérale, servant de base aux antennes qui sont plates, courtes et terminées par de petits poils divergents.

Les angles postérieurs de la carapace sont arrondis à leur extrémité, et récurvés de manière à former, de chaque côté, une large ouverture ovale, à l'aide de la rencontre qui se fait du bord latéral incurvé et inférieur du bouclier céphalique. Cette ouverture est bordée d'un liston étroit et en relief qui est garni de poils très fins et très serrés.

De la base de ce premier anneau thoracique, partent des appendices larges et plats, auxquels sont attachées des lames natatoires, armées de fortes épines divergentes et pennées (1).

Le deuxième anneau thoracique est beaucoup plus petit que le premier. Il a une forme quadrilatère et produit un rétrécissement considérable. Il sert de point d’attache, de chaque côté, à des pattes natatoires, du genre de celles qui les précèdent et qui sont, comme elles, formées d’appendices plats, armés aussi de griffes pennées.

Le troisième anneau est de beaucoup plus grand que les autres. Il a la forme d’un écusson et, à partir de son sommet, qui sert de point d'attache à l'anneau précédent, il va en s'élargissant jusqu'à sa base qui présente, de chaque côté, une pointe aiguë et légèrement récurvée. De là le bord inférieur descend obliquement jusqu'au dernier anneau, qui est

(1) Pl. 4, fig. 7.
étroit et court et est terminé de chaque côté par un appendice plat et large, garni, à son bord inférieur, de cinq longues et fortes épines qui vont, en grandissant, de l’intérieur à l’extérieur.

Il ne me reste plus, pour terminer la description de la face supérieure, qu’à parler des yeux, qui sont placés, relativement à ceux des Caliges, beaucoup plus bas qu’ils ne le sont chez ces Crustacés. Ils sont, au lieu d’être juxtaposés, écartés et séparés par une sorte de stemmate qui se voit un peu plus bas.

Vue en dessous (1), la carapace ne présente au bord frontal aucune ventouse comme cela a lieu chez les Caligiens. De plus, l’appareil buccal diffère essentiellement de celui de ces derniers Crustacés et a tout à fait la conformation de celui des Siphonostomiens. Ce tube, relativement assez long, présente de chaque côté, à sa base, un petit appendice tubiforme composé de deux articles.

De chaque côté de la bouche se voit aussi la première patte thoracique qui est très longue, formée de quatre articles, y compris le basilaire, et terminée par une griffe récurvée (2).

Un peu plus bas se trouve la deuxième patte thoracique qui est encore plus mince et plus grêle que celle qui la précède, et est terminée aussi par une griffe longue et acuminée, à laquelle s’en trouve jointe une autre, mais qui est articulée et un peu plus courte et forme avec celle-ci une pince.

La troisième patte thoracique est beaucoup plus forte que les deux premières et moins longue qu’elles. Elle est formée, y compris l’article basilaire, de trois autres segments, dont le dernier présente une petite cavité ovale dans laquelle se trouvent logés deux appendices récurvés et mobiles qui, en se rabattant et se rejoignant, forment une sorte de pince apte à saisir les objets et à les retenir.

Au-dessous de celles-ci on aperçoit, placée horizontalement, une patte très étroite fixée par son centre au bouclier cépha-
lique et terminée à son extrémité par deux petits articles, dont
le dernier est recourbé en forme de griffe.

Au-dessous et au milieu de celle-ci, on voit deux écussons,
dont le supérieur est un peu plus petit que l’inférieur et qui
sont entourés d’un bord étroit et en relief qui pourrait leur
donner le moyen d’agir comme des ventouses.

Les trois pattes natatoires dont j’ai parlé en décrivant la
face supérieure partent : les premières, de la base du bou-
clier céphalique et les autres du deuxième et du troisième
anneau thoracique (1).

Coloration. — Le corps est en entier de couleur jaune pâle.
Les yeux sont d’un rouge vermillon très vif; ils sont séparés
les uns des autres par une certaine distance, et l’on aperçoit
au milieu, entre eux et un peu plus bas, un point oculaire
plus petit.

Habitat. — Trouvé en assez grand nombre, le 26 avril 1862
et le 6 novembre 1865, sur la tête du Spinax Achantias, ou
Aiguillat de Cuvier. A ces époques les femelles n’avaient pas
d’œufs. Les mouvements de ces Crustacés sont assez vifs.

Description de l’embryon qui est attaché à la carapace du précédent Crustacé.

Le 31 mai 1861, j’adressai à l’Académie des sciences un
mémoire (2), signalant à son attention cette singulière parti-
cularité, que les embryons de certains Crustacés, vraisembla-
blement dans le but de la conservation et de la dissémination
de leur espèce, émettaient un prolongement frontal, filiforme,
à l’aide duquel ils se fixaient à la carapace d’un adulte (pro-
bablement une femelle) qui, munie de ressources locomotives
plus puissantes, l’entraînait à sa suite et pouvait en le trans-

(1) Pl. 4, fig. 7.
(2) Des moyens curieux à l’aide desquels certains Crustacés parasites
assurent la conservation de leur espèce (Comptes rendus de l’Académie des
sciences, t. XLVI, p. 1054, 1055 (1858); Annales des sciences naturelles, t. IX,
p. 120-125 (1858); Bibliography to accompany “selections from embryogical
monographs ”, compiled by Alexander Agassiz, Walter Faxon and E. L.
Mark, 1 Crustacea, by Walter Faxon.

ARTICLE N° 3.
portant sur un autre Poisson aller fonder une nouvelle colonie.

Un de ces Crustacés qui me servit à cette démonstration était précisément celui que je viens de décrire et que je n'ai pas voulu séparer de son embryon sans en faire ici mention.

Cet embryon a environ 3 millimètres de long sur 1 de large (1). Son corps étroit et allongé a la forme d'une navette. La partie antérieure de son front, qui s'avance en pointe, porte à son extrémité antérieure un bouton ombilical qui sert de point d'attache au prolongement filiforme qui est terminé, à son autre extrémité, par un épalement circulaire, en forme de talle, à l'aide duquel il se soude à la carapace ou à un objet quelconque auquel il veut se fixer (2). Cet appendice est extrêmement flexible, de sorte que, comme s'il s'agissait d'une ligne à laquelle serait attaché un Poisson, il lui permet de se diriger en tous sens.

Des deux côtés de ce bouton frontal on aperçoit une paire d'antennes qui sont longues, plates, formées de deux articles au bout desquels on voit quelques poils divergents.

Au milieu de la partie frontale, on aperçoit une paire d'yeux, qui sont relativement très gros et séparés les uns des autres par un faible intervalle.

La carapace se termine latéralement par une pointe aiguë précédée d'une petite dent.

Le corps se rétrécit considérablement et forme un tube partagé en cinq anneaux, dont le premier, qui est le plus

(1) Pl. 4, fig. 1, 3 et 4.
(2) L'embryon ne s'attache pas seulement aux individus de son espèce, j'en ai trouvé, ainsi que je l'ai fait connaître dans mon mémoire précité, attachés aux branchies du Poisson sur lequel vivaient les adultes de son genre. J'en ai également trouvé fixés sur des Caligés, des Trébies, des Anchorelles et sur des Chondracanthes, voire même sur l'article fémoral d'une Cymothoe. Enfin il paraît que cette singulière particularité n'est pas seulement réservée aux parasites d'une certaine grandeur, car, d'après la planche 93, figure 10, 3e volume de l'important ouvrage publié par le professeur Stewardson Brady, dans sa Monographie des Copépodes, elle existerait aussi chez l'Artotrogus Normani, sur le sommet du bord frontal, où on voit encore le tronçon rompu d'un appendice de cette nature.
large et le plus long, sert de point d’attache, de chaque côté, à un appendice large et plat, terminé à son extrémité par deux lames également plates, servant de nageoires et bordées de poils.

Les autres anneaux, qui vont en diminuant de calibre, sont à peu près de la même longueur, et le dernier est terminé, des deux côtés, par un appendice plat rémiforme, également garni de longs poils.

En dessous (1), le corps présente, près du bord frontal, le tube buccal, qui est relativement assez long et assez fort et est terminé en pointe aiguë et récurvée.

De chaque côté de ce tube on aperçoit une patte courte (2), mais robuste, formée de deux articulations et terminée par une très forte griffe dont la pointe est recourbée en dedans.

Au-dessous de celle-ci et sur la partie thoracique sont deux pattes qui, comme la première, sont terminées par des griffes assez fortes.

Enfin, à la hauteur du premier anneau thoracique, et en dessous, on remarque, à l’extrémité d’un article fémoral, assez long, des lames plates, denticulées sur les bords et garnies de soies, qui sont destinées à favoriser les mouvements de propulsion et de natation, et, de chaque côté de l’anneau suivant, deux lames plates, denticulées, qui sont consacrées aux mêmes fonctions.

Ces embryons sont très actifs et très vivaces; j’ai eu plusieurs fois l’occasion de les voir survivre aux Crustacés auxquels ils étaient attachés, malgré la décomposition avancée de ceux-ci.

Genre LÉPIMACRE (Nobis) (3).

Lépimacre Jourdain, Lepimacre Jourdaini (Nobis).

Malé, inconnu.

Femelle (4). — Elle mesure 6 millimètres de longueur sur

(1) Pl. 4, fig. 4.
(2) Pl. 4, fig. 5.
(3) Lépimacre, des mots grecs λεπίς, écaille; ὑπάρχω, longue.
(4) Pl. 4, fig. 8.

ARTICLE N° 3.
4 de largeur. Son bouclier céphalique, qui, pour la forme, ressemble à celui des Caliges, des Trébies et des Nogagues, est à peu près aussi large que long, avec un léger rétrécissement au milieu de son bord latéral.

Les lames du bord frontal sont assez étroites et en se rabattant sur les côtés ne forment aucune échancrure au milieu. On aperçoit à cet endroit deux petits tubercules arrondis et creux. Au milieu et au-dessous, une autre petite excavation également arrondie, mais plus grande, entourée de trois lignes concentriques.

Les lames frontales présentent à leur extrémité extérieure un petit lobe arrondi qui sert de base aux antennes, qui sont terminées par quelques poils rigides et divergents.

Les angles postérieurs de la carapace sont, comme dans l'espèce précédente, terminés en pointe, mais plus longue et plus étroite, allant à la rencontre d'une expansion thoracique, plate, à extrémité arrondie et récurvée qui, par sa jonction, forme avec elle une échancrure latérale assez grande (1).

Cet appendice plat est en outre armé à son bord extérieur de deux pointes récurvées, dirigées l'une vers l'autre, formant une sorte de pince (2).

Entre ces deux lames plates et au milieu et à la base de la carapace, se trouve un prolongement du thorax, de forme cylindrique, divisé en quatre anneaux, à peu près de la même grandeur, si ce n'est le dernier qui est encore plus petit et arrondi à son extrémité.

Ce prolongement thoracique sert de point d'attache à deux larges lames élytroïdes, à peu près carrées et légèrement échancrées à leurs bords inférieurs et intérieurs.

Des deux côtés extérieurs de ces deux lames on en aperçoit d'autres en dessous qui les débordent à peu près de moitié, et sont aussi un peu plus longues. Ces deux lames sont moins épaisses que celles qui les recouvrent en partie.

(1) Pl. 4, fig. 8.
(2) Pl. 4, fig. 8 et 12.
Enfin, pour terminer la description de la face supérieure, il faut ajouter qu'à ces élytres sont fixées, en dessous, par leur base, deux autres encore plus minces et plus transparentes que celles-ci, mais deux fois plus longues.

A leur début elles sont de la même largeur que celles qui les recouvrent; mais elles vont en se rétrécissant considérablement jusqu'à leur extrémité inférieure qui est arrondie au bout et est terminée par quatre petites griffes plates et cornées (1).

Ces lames sont très échancrées au milieu de leur bord intérieur et, par contre, le bord extérieur est arrondi et saillant du côté opposé de manière à se toucher au centre et à avoir au contraire leurs extrémités écartées l'une de l'autre.

On aperçoit au milieu du vide laissé par l'écartement de ces deux lames, l'extrémité abdominale avec les deux lames terminales qui sont relativement très grandes, ovalaires et garnies à leur bord inférieur de cinq fortes pointes, plates, divergentes et pennes.

Les yeux, placés au milieu de la carapace, non loin de son bord supérieur, sont relativement petits et écartés l'un de l'autre et placés plus bas qu'ils ne le sont chez les Caligien's et les Crustacés qui leur ressemblent. Tous les bords du bouclier céphalique sont, comme chez eux, garnis d'une légère membrane plissée.

Vu en dessous (2), les lames frontales présentent à leur extrémité postérieure, près du lobe qui sert de point d'attache aux antennes, une petite ventouse.

Un peu plus bas, on aperçoit de chaque côté de la ligne médiane, la première patte thoracique qui est assez forte et est formée de quatre articles, dont le dernier, qui est le plus long, se termine par une griffe recourbée en crochet (3) et à sa base se trouve une ventouse.

La deuxième patte thoracique est d'une force moyenne;

(1) Pl. 4, fig. 8 et 11.
(2) Pl. 4, fig. 9 et 13.
(3) Pl. 4, fig. 14.

ARTICLE N° 3.
elle est composée de deux articles dont le dernier est didactyle.

Enfin la troisième patte, plus robuste que les précédentes, est formée de deux articles; seulement elle est aussi terminée par une griffe très forte et recourbée, mais ce qui la caractérise d'une manière particulière, c'est qu'elle est pourvue au milieu de l'article fémoral d'une forte ventouse (1).

La bouche est formée d'un siphon d'une assez grande longueur qui va en diminuant de grosseur, de la base au sommet, qui est très aigu (2).

De chaque côté, à sa base, se trouvent de petits appendices, formés de deux articles, dont le dernier est garni à son extrémité de petits poils rigides. On remarque, en outre, de chaque côté de son sommet, une petite ventouse ovale qui se trouve aussi à la base de la troisième paire de pattes thoraciques. Plus bas que celles-ci, et au milieu du bouclier céphalique, on aperçoit une sorte d'écusson très grand et très large, de forme presque ovale, arrondi au sommet et tronqué à sa base, environné d'un liston en relief, qui contient une série de ventouses de différentes formes et de grandeurs diverses.

La première, la plus proche du sommet de l'écusson, forme un carré long, placé au-dessus et au milieu de deux petites ventouses au-dessous desquelles sont deux autres, de la même dimension, et au milieu de celles-ci, et sur la même ligne, on en voit deux autres plus petites renfermées dans un petit carré qui se trouve à la base du bouclier céphalique, lequel présente, de chaque côté, les larges ouvertures latérales par lesquelles il est terminé.

Au-dessous de celles-ci se trouve la base des trois pattes natatoires qui sont composées d'un large et puissant article fémoral donnant attache à des lames plates qui sont au nombre de deux, de chaque côté, et pour chaque patte. Ces lames sont formées de trois articles, par chaque lame, et elles sont bordées de nombreuses pointes aiguës et de poils rigides.

(1) Pl. 4, fig. 9 et 15.
(2) Pl. 4, fig. 9 et 10.
Sur la ligne médiane et à la base de ces pattes natatoires, on voit une large ventouse ronde, et, au-dessus de celle-ci, une autre deux fois plus longue, et dont l'extrémité inférieure est terminée par une pointe arrondie.

À la suite de ces pattes, le corps se prolonge en un tube cylindrique du même calibre, dans toute son étendue; il ne présente, à son extrémité, qu'un article relativement assez court, suivi d'un rétrécissement qui précède l'extrémité abdominale, laquelle est terminée, de chaque côté, par deux lames plates et divergentes, garnies de cinq pointes rigides et pennées.

Coloration. — Le corps est légèrement coloré en jaune pâle. La carapace est entourée d'un liséré de cette couleur, mais plus foncé. Les yeux, qui sont à une certaine distance les uns des autres, ont une couleur rouge vif et sont placés au bas d'un petit écusson d'un jaune assez vif; une raie noire médiane parcourt le corps verticalement, dans presque toute son étendue.

Tout le bouclier céphalique est entouré d'une membrane mince et légèrement plissée, de couleur rougeâtre.

Habitat. — Trouvé un seul exemplaire, le 15 juin 1863, sur un Squale-nez (*Lamna cornubica*).

Je dédie cette curieuse espèce à M. le professeur Jourdain, en témoignage de mon estime et de mon amitié.

Espèces dont les appendices latéraux de l'abdomen sont courts, trapus et, en grande partie, cachés sous la face inférieure du corps.

Genre PANARE.

Mâle inconnu.

Femelle (1). — Elle a environ de 6 à 7 millimètres de lon-

(1) Pl. 5, fig. 1.

ARTICLE N° 3.
gueur sur 5 de largeur; l'ensemble de son corps forme un ovale très allongé dans lequel les deux extrémités sont presque arrondies.

Le bouclier céphalique est clypéiforme; les côtés latéraux sont perpendiculaires et se terminent par une pointe aiguë. Le front s'avance en pointe arrondie, très légèrement échancré au milieu, et sert de point d'attache, de chaque côté, aux antennes qui ont pour base un petit lobe ovale, recouvert d'épines et terminé par un appendice plat et court, ayant à son extrémité quelques poils divergents (1).

Le bord frontal est accompagné de deux lames minces qui suivent son contour, qui est extrêmement étroit près de la ligne médiane où elles se réunissent.

La face supérieure du bouclier céphalique est unie et présente, au milieu, une ligne légèrement déprimée qui part du dessous des yeux pour descendre verticalement jusqu'au bord inférieur de la carapace qui est légèrement dentelé de cinq petites pointes arrondies.

Les yeux sont extrêmement petits et arrondis; ils sont creux, séparés les uns des autres, et dirigés obliquement et latéralement (2).

Le premier anneau thoracique est le moins long des trois autres, il est formé de quatre squames ou lames scutiformes, dont les deux du milieu, qui sont les plus larges et les plus grandes, sont légèrement séparées par une petite échancrure médiane, et elles sont accompagnées, de chaque côté extérieurement, d'une autre lame seulement plus étroite, mais de la même longueur et arrondie à son extrémité.

Le deuxième anneau est un peu plus long que le premier, mais il n'est formé que de deux appendices lamelleux qui sont arrondis à leur bord inférieur et séparés entre eux par une légère échancrure. Enfin, le troisième et dernier anneau, qui est le plus long et aussi le plus étroit, est formé d'une seule

(1) Pl. 5, fig. 6.
(2) Pl. 6, fig. 15.
pièce qui est échancrée au milieu de son bord inférieur, de manière à recevoir une petite lame arrondie qui est appuyée sur une autre beaucoup plus grande, remplissant cette échancre et servant à recevoir les appendices lamelleux qui terminent l'abdomen.

La face inférieure du bouclier céphalique présente, des deux côtés du bord frontal, deux fortes ventouses ampulliformes placées obliquement (1).

Sur le bord supérieur de celles du milieu, on voit contournée, lorsqu'elle est au repos, la première patte thoracique (2).

Celle-ci est plate et creuse (3), et lorsqu'elle est en fonction, elle se déploie et l'on aperçoit alors les articles dont elle est formée et la forte griffe qui la termine.

Un peu plus bas, sur la ligne médiane, se trouve la tête qui est fixée, par sa base, au bouclier céphalothoracique (4).

La bouche est formée d'un prolongement cylindrique tabiforme, qui remplit les fonctions de suer et contient, dans son intérieur, deux tiges grêles et rigides, terminées, à leur extrémité, par des pointes acuminées et dentelées en scie (5). Celles-ci sont néanmoins flexibles à leur extrémité supérieure et peuvent se ployer de manière à former un crochet dont la pointe est dirigée en bas (6).

On voit, en outre, au milieu de celles-ci, une autre tige, un peu plus forte, qui est terminée par une pointe en forme de stylet (7).

Le siphon, soumis à l'action du compresseur, présente diverses formes (8) : il semble terminé par deux petites mâchoires, qui, écartées à leur base, se rapprochent obliquement et se réunissent à leur sommet, de manière à former une

(1) Pl. 5, fig. 2.
(2) Pl. 5, fig. 4.
(3) Pl. 5, fig. 3.
(4) Pl. 5, fig. 5.
(5) Pl. 6, fig. 12 et 28.
(6) Pl. 6, fig. 26.
(7) Pl. 6, fig. 16.
(8) Pl. 6, fig. 17 et 24.

ARTICLE N° 3.
pointe sagittée qui doit nécessairement faciliter son introduction dans les chairs.

Le tube est parcouru, à partir du front, dans toute son étendue longitudinale, par de fortes nervures destinées, sans doute, à le consolider, et qui laissent entre elles, au milieu, en dessus, une certaine distance qui se prolonge de sa base à son sommet (1).

La bouche ou plutôt ses accessoires subissent, suivant l'âge, plusieurs modifications. C'est surtout dans les appendices rudimentaires que ces mutations sont nombreuses et variées. Il en est de même de la présence ou de l'absence des ventouses qui en complètent l'action (2).

Dans le jeune âge, le siphon paraît formé de deux parties faciles à distinguer : celle qui tient immédiatement à la base frontale, et celle qui termine la bouche (3). Cette dernière, un peu renflée au milieu, est rétrécie à son extrémité et terminée par un orifice élargi et entouré d'un bord saillant et arrondi.

La tête, vue en dessous, présente de chaque côté deux nervures qui partent de sa base et vont, en se rapprochant graduellement, se rejoindre au sommet. Ces nervures sont évidemment destinées à consolider la bouche dans toute son étendue.

On aperçoit de chaque côté de celle-ci les deuxièmes pattes thoraciques, qui sont longues, minces, formées de deux articles, le fémoral et celui qui la termine et qui est didactyle.

A sa base ainsi qu'à celle de la troisième patte thoracique, on aperçoit une petite ventouse ovale, creuse, relevée sur ses bords, dont la forme rappelle celle de la coquille des Sigarets et des Haliotides (4).

Cette troisième patte (5) est très robuste ; elle se compose de deux articles : le fémoral qui est gros et légèrement aplati ;

(1) Pl. 6, fig. 25 et 27.
(2) Pl. 6, fig. 25 et 27.
(3) Pl. 3, fig. 23.
(4) Pl. 2, fig. 2 et 14.
(5) Pl. 5, fig. 2; pl. 3, fig. 7, 21 et 22.

ANN. SC. NAT., ZOOL., JUIN 1883. XV. 15. — ART. N. 3.
et le deuxième article qui est aussi très fort et qui contient une petite cavité dans laquelle se meuvent de petits appendices plats, lamelleux et bifurqués, qui en se combinant avec un petit lobe globuliforme placé en face, constituent une sorte de pince à l'aide de laquelle ils peuvent saisir les objets et les retenir solidement.

On voit ensuite entre ces deux pattes et au milieu de la carapace deux nervures verticales destinées à consolider le système tégumentaire du squelette céphalothoracique ; elles forment un triangle aigu, étroit et allongé, dont le sommet est dirigé vers la tête, et la base, qui est infundibuliforme, est près du bord inférieur de la carapace (1).

En dessous de ces deux nervures on en voit une autre, qui est horizontale et terminée, à ses extrémités, par une longue et forte griffe qui se rabat sur les ventouses pneumatiques qui, de chaque côté, sont placées aux angles inférieurs de la carapace ; elles sont, en outre, accompagnées d'autres griffes plus ou moins fortes, auxquelles s'en joignent d'autres encore plus petites et ayant la forme d'hameçons (2).

Au-dessous de cette nervure, à la base et au milieu du thorax, se trouve une assez grande ventouse quadrilatère, qui est suivie, à égale distance et sur la même ligne, de trois autres qui sont placées à la base des pattes natatoires (3). Celles-ci sont au nombre de trois, elles sont biramées et superposées, solidement fixées à la surface thoracique inférieure par un article basilaire fémoral très large, qui donne attache à deux lames plates et de grandeur inégale et terminées par des griffes crochues (4).

Le reste du corps ne présente qu'une surface unie et légèrement bombée au centre, sur laquelle on aperçoit, au-dessous des pattes natatoires, une bande chitineuse étroite et découpée qui leur sert d'encadrement et les consolide. On voit aussi

(1) Pl. 5, fig. 2 et 10 ; pl. 3, fig. 7.
(2) Pl. 2, fig. 2 et 10.
(3) Pl. 2, fig. 2, 10, 7, 8 et 9.
(4) Pl. 2, fig. 7, 8 et 9.

ARTICLE N° 3.
à travers la peau les viscères qu'elle contient et particulièrement les œufs en voie de transformation.

Enfin, le corps est terminé par les appendices abdominaux dont les extrémités forment saillie de chaque côté. Ils se composent de deux lames larges, plates, triangulaires, terminées en pointes dirigées en dehors et légèrement inclinées en dehors, et en particulier les œufs en voie de transformation.

Au-dessus de celles-ci se voit, au milieu, un petit liséré en relief, allant horizontalement de l'un à l'autre. Cet organe n'existe pas chez tous les individus, notamment chez les femelles qui n'ont pas atteint l'état adulte ; et alors on aperçoit, à leur place, autour d'un petit orifice vaginal, des granulations chitineuses.

C'est en dessous de ces lames, qui forment comme une sorte de tablier servant à les abriter, que se trouve la base des tubes ovifères. Ceux-ci ont à peu près une longueur et demi de celle du corps, et ne contiennent, dans leur largeur, qu'un seul œuf. Ils sont empilés les uns sur les autres, comme des pièces de monnaies dans un rouleau (2).

Les embryons de ces Crustacés n'offrent rien de particulier et ressemblent à tous ceux des Peltocéphales (3).

Au Crustacé que je viens de décrire, j'en ai trouvé d'autres mêlés, qui sont vraisemblablement les jeunes de la même espèce, si j'en juge par leur taille qui n'est guère que de 4 ou 5 millimètres. Peut-être même le premier est-il un mâle (4). Il a le corps très allongé et cylindrique, et de la même grosseur d'une extrémité à l'autre.

Sa carapace forme presque le tiers du corps. Il a le front pointu, mais arrondi au bout, des deux côtés duquel sont les lames frontales, d'une grandeur proportionnée à celle du

(1) Pl. 2 fig. 2 et 13.
(2) Pl. 5, fig. 11.
(3) Pl. 5, fig. 12.
(4) Pl. 6, fig. 9.
reste du corps, qui est divisé d’abord en trois anneaux thoraciques, d’une dimension égale, et suivis d’un autre qui, à lui seul, a presque la longueur des précédents. Il est suivi d’un autre très petit servant de point d’attache, de chaque côté, aux lames caudales, qui sont larges et plates et garnies d’épines pennées et divergentes.

L’autre individu (1) est de la même taille, mais il en diffère par la largeur de son bouclier céphalique qui est scutiforme, avec de grandes échancrures latérales à sa base. Les lames frontales sont larges et élevées. On aperçoit aussi, de chaque côté, par transparence, les quatre ventouses qui existent, au même endroit, chez les adultes. Le reste du corps est formé de cinq articles, dont les trois premiers sont larges et à peu près de la même grandeur, créant, dans leur ensemble, une surface plate, mais arrondie sur les bords. Ceux-ci sont suivis d’un article très long et très étroit, qui précède le dernier anneau qui est petit et terminé par deux expansions larges et plates, garnies d’épines.

Ces deux individus me paraissent, ainsi que je l’ai dit, être, le premier, un jeune mâle, et le deuxième une jeune femelle.

Enfin, j’ai, en outre, trouvé avec ceux-ci une autre femelle, qui est probablement de la même espèce, mais qui n’a pas encore atteint l’âge adulte complet, bien qu’elle en ait à peu près la taille (2). Elle a 5 à 6 millimètres de longueur sur 3 de largeur. Son corps, dans son ensemble, est plus élancé et plus étroit que celui des adultes.

Les squames du premier anneau thoracique sont comparativement plus petites et plus courtes, et au nombre de quatre, tandis que celles du deuxième anneau sont assez grandes et deux fois plus longues et plus larges que les précédentes. Il en est de même de celles du troisième anneau qui sont aussi deux fois plus longues que les précédentes et se terminent en pointes, au lieu d’être arrondies à leur extrémité comme le

(1) Pl. 6, fig. 10.
(2) Pl. 6, fig. 11.
CRUSTACÉS RARES OU NOUVEAUX.

sont celles des adultes. L'espace qui résulte de cette échan-
crure du milieu est occupé par une petite squame arrondie
au-dessous de laquelle on aperçoit une autre plus grande et éga-
lement arrondie à son extrémité qui recouvre deux lames laté-
rales plates et triangulaires, terminant l'abdomen et qui sont
armées, au bout, d'une pointe acuminée.

Je ne donne pas ici la description de la face inférieure de
celui Crustacé, attendu qu'elle n'offre pas de différence avec celle
que j'ai décrite en parlant de la femelle adulte.

La coloration de celle-ci, ainsi que celle des deux autres,
est entièrement d'un jaune pâle ; on aperçoit cependant quel-
quefois, au milieu du bouclier céphalothoracique des indi-
vidus femelles, une tache brune dont l'étendue est plus ou
moins grande.

Les femelles des adultes (1) ont le bouclier céphalique d'un
beau jaune d'or, couvert, au milieu, par une large tache d'un
noir brun profond qui recouvre la partie frontale et presque
toute la carapace, ne laissant apparaître la couleur jaune que
sur le bord extérieur, des deux côtés, et sur le bord inférieur
de celle-ci, et ménageant au milieu une raie étroite qui part
des yeux et descend verticalement jusqu'au bord inférieur de
la carapace, laissant autour de ceux-ci un petit espace égale-
ment de couleur jaune. Tout le reste du corps est aussi de la
même couleur, une tache d'un brun rougeâtre, en croissant,
existe sur le bas des deux premières squames ainsi que celles
du deuxième anneau thoracique ; mais ces couleurs n'occupent
pas la même étendue chez tous les individus; il y en a chez
lesquels elle est plus ou moins restreinte, sous le rapport de la
densité et de l'étendue. La femelle que je représente dans ma
planche 2, figure 1, est dans l'état adulte complet.

En dessous, la coloration du bouclier céphalique est d'une
couleur entièrement noire, sur laquelle tranche celle des
organes et particulièrement les quatre ventouses ampu-
liformes qui sont blanches. La couleur du reste du corps est jaunâtre

(1) Pl. 5, fig. 1.
et celle des pattes nageoires et autres est plus pâle et bordée d’un étroit liséré rouge.

Les tubes ovifères sont rougeâtres, et les œufs qui y sont contenus sont aussi de cette couleur, ils semblent, en outre, être divisés en deux par une raie noire (1) horizontale qui va d’un pôle à l’autre.

Les embryons ont la forme ordinaire de ceux des autres Crustacés de cette espèce. Le corps est blanc plus ou moins tacheté de noir.

Habitat. — Trouvé en assez grand nombre généralement à partir du mois de novembre au mois de mars, sur le Squale Aiguillat (de Cuvier), Spinax Achantias.

Pandare du Squale bleu. Pandarus Carcharii glacus (Nobis).

Mâle inconnu.

Femelle (2). — Elle mesure 8 millimètres de longueur sur 5 millimètres de largeur. La forme de son corps est un ovale allongé, plus étroit à sa partie supérieure qu’à l’inférieure.

Son bouclier céphalique s’avance en pointe large et arrondie et, de chaque côté du bord frontal, on aperçoit deux lames assez étroites qui se rejoignent au milieu et au-dessus desquelles on voit une autre lame un peu plus large et transparente.

Les antennes sont placées à l’extrémité de celles-ci; elles sont formées, comme à l’ordinaire, d’un petit lobe arrondi et garni d’épines au bout duquel existe une petite tige plate, terminée par quelques poils divergents.

Les yeux sont placés au milieu et à une certaine distance du bord frontal.

Le bouclier céphalothoracique, légèrement rétréci au milieu, s’élargit ensuite vers la base, dont les extrémités se terminent en pointe, et le bord inférieur présente, au milieu, une dent large et carrée. Tout le bord de la carapace est bordé d’un petit

(1) Pl. 5, fig. 11.
(2) Pl. 6, fig. 4.

ARTICLE N° 3.
liséré en relief qui présente extérieurement des dentelures très aiguës et très serrées (1). Le bord extérieur est en outre pourvu d'une membrane très mince et plissée.

Le premier anneau thoracique est plus court et plus étroit que les deux autres qui le suivent. Il présente, sur les côtés, deux petites lames étroites et légèrement arrondies à leur extrémité, qui est plus courte que celle des deux autres qui sont au milieu et qui présentent, au centre, une échancrure. L'anneau suivant n'est composé que de deux larges squames plus grandes que les précédentes qui sont suivies de deux autres encore plus grandes et plus larges et, comme l'autre, échancrées.

On aperçoit, dans l'intervalle qu'elles laissent entre elles, un petit appendice arrondi, au-dessus duquel se trouve une lame plus grande qui recouvre en grande partie les appendices latéraux de l'abdomen.

En dessous, rien de particulier ne se présente ; la conformation des organes se rapproche tellement de ceux des autres Pandares qu'il ne m'a pas paru nécessaire de la mentionner.

Je dois cependant signaler une particularité qui a peut-être son importance : c'est qu'au milieu du front, à l'endroit où les lames se rencontrent, on aperçoit un petit godet du centre duquel émerge une petite tige assez courte. Est-ce une exception individuelle ou une particularité propre à l'espèce ? C'est ce que je ne saurais dire. Mais peut-être est-elle le reliquat d'un prolongement frontal, filiforme, qui aurait servi, lorsque l'animal était à l'état embryonnaire, à le fixer sur un objet quelconque.

Coloration. — Tout le corps est d'un beau jaune orangé très vif. Les ventouses frontales, qui s'aperçoivent par transparence, sont rougeâtres. Les deux premiers anneaux thoraciques ont au milieu, à leur bord inférieur, une petite tache brune.

(1) Pl. 6, fig. 1.
Habitat. — Trouvé un seul individu femelle sur le Squale Bleu (Carcharias glaucus), le 31 janvier 1861.

Pandare unicolore. *Pandarus unicolor* (Nobis).

Les deux petits Crustacés dont je vais donner la description ont été, comme l’adulte dont je m’occuperai ensuite, trouvés sur le Squale Milandre (*Galeus vulgaris*). Le premier est évidemment une femelle puisque déjà on aperçoit la trace des tubes ovariques. L’autre pourrait bien être un mâle. Je commence par la description de la femelle (1).

Elle n’a que 5 à 6 millimètres de longueur sur 3 de large; sa carapace, large et elypéiforme, est arrondie au bord supérieur des deux côtés duquel on aperçoit les lames frontales qui sont très étroites au milieu, à l’endroit de leur réunion, et servent de point d’attache à leur extrémité latérale aux antennes qui sont courtes et plates.

Le bouclier céphalique est fortement échancré au milieu et les pointes latérales sont très récurvées, ce qui lui donne la forme d’un croissant.

L’anneau suivant sert de base à celui-ci. Il est relativement assez petit à raison de deux échancrures latérales.

Le suivant est beaucoup plus grand; il est rétréci à son point de jonction avec le bord inférieur du précédent; il va en s’élargissant au milieu et en diminuant et en s’arrondissant à sa base. Cet anneau sert des deux côtés de point d’attache à deux paires de pattes natatoires biramées, garnies d’épines pennées. Il est suivi d’un anneau qui est considérablement réduit de largeur et de grandeur; il est presque carré et sert de base, des deux côtés, à des pattes biramées semblables à celles qui les précèdent.

Le cinquième anneau est beaucoup plus grand et plus long que le précédent; il a la forme à peu près d’un écusson. Son bord supérieur est arrondi et les latéraux descendant vertica-

(1) Pl. 6, fig. 4.

ARTICLE N° 3.
lement et parallèlement, présentant au milieu une légère échancrure et ayant les extrémités latérales pointues et récurvées.

Enfin, le dernier anneau est infiniment plus étroit; il est très court et est terminé par deux lames plates et divergentes qui sont garnies de cinq épines pennées.

Les yeux sont petits et écartés l'un de l'autre (1).

Le deuxième Crustacé, que je crois être un mâle, est à peu près de la taille du précédent, c'est-à-dire qu'il a de 5 à 6 millimètres de longueur sur 3 de largeur.

La carapace est beaucoup plus étroite et plus allongée que celle de la femelle que je viens de décrire. Son bord supérieur s'avance en pointe arrondie, des deux côtés de laquelle se trouve une lame mince et transparente et deux petits lobes qui donnent attache aux antennes qui sont plates et courtes. Les extrémités inférieures du bouclier céphalique sont modérément échancrées et se terminent en pointes récurvées.

L'anneau suivant est grand et large. Il est plus étroit à l'endroit de sa jonction avec le bord inférieur de la carapace qu'à sa partie inférieure qui est arrondie. Celle-ci donne attache à deux paires de pattes natatoires qui sont biramées et formées de lames plates pourvues de soies rigides et pennées.

L'anneau suivant est extrêmement petit et cordiforme. Il est également pourvu, de chaque côté, d'une patte natatoire biramée, formée de lames plates garnies de pointes pennées.

L'avant-dernier anneau est très grand et large; il est arrondi à son bord supérieur, et ses deux côtés, qui sont droits et verticaux, se terminent carrément à sa base.

Le dernier est très court et infiniment plus étroit, présentant, de chaque côté, des lames plates et divergentes armées de cinq épines rigides et pennées.

(1) Pl. 6, fig. 5.
Les yeux sont, comme chez ses congénères, petits, écartés les uns des autres.

On aperçoit, par transparence, à travers la carapace, les ventouses qui sont de chaque côté placées près du bord frontal extérieur.

La femelle adulte (1) a 6 millimètres de longueur sur 2 et demi de largeur; l’ensemble du corps forme un ovale allongé dont les deux extrémités se terminent en pointes arrondies.

Le bord frontal est plus étroit et s’avance plus en pointe arrondie que celui du Pandare de l’Aiguillat; ses lames sont aussi plus larges.

Le bord inférieur de sa carapace ne présente pas des pointes latérales aussi longues ni aussi aiguës; ses dentelures du milieu ne sont qu’au nombre de trois, dont celle du centre est carrée et les deux latérales plus étroites et pointues.

Les squames du premier anneau thoracique sont moins longues que celles des deux qui suivent; elles sont au nombre de quatre: deux au milieu qui sont larges et arrondies à leur bord inférieur, et les deux latérales qui sont beaucoup plus étroites, mais dont la longueur ne dépasse pas celle des autres.

Le deuxième anneau, comme le troisième, ne présente que deux appendices lamelleux qui sont arrondis comme les premiers à leur bord inférieur, et sont séparés au milieu par une légère échancrure; celle du dernier anneau est remplie par un petit appendice plat et arrondi.

Les lames caudales sont courtes et ne laissent apercevoir en dessus que leur pointe qui dépasse de peu, de chaque côté, la squame qui les recouvre.

Les yeux (2) sont petits, ovaux, et séparés les uns des autres; ils sont placés sur une petite élévation qui leur permet de voir les objets plus facilement autour d’eux.

Je ne donne pas ici la description de la face inférieure du corps, attendu qu’elle ressemble presque entièrement à celle

(1) Pl. 3, fig. 3.
(2) Pl. 3, fig. 19.
que j'ai faite de celle de la Pandare de l'Aiguillat à laquelle je prie de se reporter.

Coloration. — Les jeunes Crustacés ainsi que les adultes sont d'une couleur jaune pâle, un peu plus foncée chez la femelle adulte, à travers de la carapace de laquelle on aperçoit, par transparence, les ventouses qui sont placées près du bord frontal et qui sont d'une couleur orange foncée ainsi que chez la jeune femelle. Le corps, en outre, chez ceux-ci, présente une raie noire verticale qui parcoure le corps dans presque toute son étendue et qui indique le trajet du tube intestinal.

Habitat. — Le Milandre Galeus vulgaris (de Cuvier) trouvé en une assez grande quantité en février et mars 1858.

Pandare de l'émissole. Pandarus Musteli lævis.

Le mâle? (1) n'a pas plus de 5 millimètres de longueur sur 3 de largeur. Son corps allongé se compose d'un bouclier céphalothoracique clépéiforme dont le bord frontal s'avance en pointe assez aiguë et de chaque côté de laquelle sont deux lames larges et plates, terminées, à leur extrémité extérieure, par les antennes fixées sur un petit lobe lamelleux.

Ce bouclier est fortement échancre, de chaque côté, à sa base, et est terminé par des pointes arrondies à leur extrémité et récurvées.

Le premier anneau thoracique est assez grand; il est également échancre des deux côtés, et sa base, qui va en s'élargissant, repose sur un autre anneau plus petit, dont le bord inférieur forme trois découpures.

Le troisième anneau, très étroit et très petit, est cordiforme, et comme ceux qui le précèdent, il donne attache à des pattes natatoires biramées, garnies de griffes rigides et pennées.

Le quatrième anneau est, à lui seul, aussi grand que les précédents; a la forme d'un écusson, venant, en s'élargissant, du sommet à la base, qui se termine par un petit prolongement, qui est de la même largeur que l'anneau suivant, auquel il sert

(1) Pl. 3, fig. 6.
de point d’attache. Celui-ci est terminé par de larges lames plates, qui sont armées de cinq fortes griffes légèrement récurvées et ciliées.

En dessous (1) les premières pattes thoraciques sont longues et grêles, terminées par une assez forte griffe (2) et formées de trois articles. On remarque, à sa base, et près du bord frontal, une large ventouse, mais autour de laquelle elle n’est pas repliée comme cela a lieu dans la Pandare de l’Aiguillat et qui, du reste, ne lui ressemble pas par sa conformation, qui est creuse et non ampuliforme.

Un peu plus bas que ces ventouses, on aperçoit le tube buccal qui est formé de la même manière que ceux des autres Crustacés de la même espèce que j’ai décrits.

Vient ensuite la troisième patte qui est aussi conformée de la même manière que celles que j’ai décrites en parlant des Crustacés du même genre. Elle présente aussi, à sa base, une petite ventouse de forme ovale, auriforme, semblable à celles dont j’ai déjà parlé.

On aperçoit également, au milieu de la carapace, deux nervation en relief qui de la tête descendent jusqu’au bas du bouclier céphalothoracique et qui, pour le consolider, forment le squelette de la face interne de celui-ci. Ces deux nervures qui, en s’éloignant de leur point de départ, s’écartent progressivement jusqu’à leur base, qui est infundibuliforme, forment une sorte de ventouse.

En-dessous de celle-ci, on voit encore une autre nervure en relief, horizontale et qui suit le bord inférieur de la carapace, laquelle nervure est terminée, à ses deux extrémités, par une griffe recourbée et pennée.

Un peu plus bas et au milieu du premier anneau thoracique, se trouve une ventouse, relativement grande et, en-dessous de celle-ci, sur la même ligne, sont trois écussons qui servent de base de chaque côté, à des pattes natatoires biramées, à

(1) Pl. 3, fig. 7.
(2) Pl. 3, fig. 20.

ARTICLE N° 3.
fémur très large, qui sont terminées par des lames plates, garnies de poils rigides et pennés.

Le reste du corps ne présente rien de particulier; il se compose d'un anneau assez grand et de forme carrée, suivi d'un autre très petit et étroit, terminé par deux lames plates, garnies de cinq épines recourbées et pennées.

La jeune femelle (1) a beaucoup de rapport avec celle que j'ai décrite en parlant du Pandore unicolor femelle à l'état jeune (2).

Elle n'a pas plus de 4 à 5 millimètres de longueur sur 2 de largeur. Vue en dessous, le bord supérieur de son bouclier céphalothoracique se termine en pointe avec un petit bouton à son extrémité. Des deux côtés sont les lames frontales qui se rejoignent au milieu, où elles sont si étroites qu'elles ne forment pas d'échancreures, leur extrémité latérale, au contraire, est plus large et donne attache à un petit lobe sur lequel est fixée l'antenne qui est petite, plate et courte.

La forme du bouclier céphalique est ovale, allongée, et ses deux extrémités sont pointues, récurvées et assez échancrées.

Le premier anneau thoracique est aussi très échancreé latéralement; il est plus étroit à son sommet qu'à sa base, et son bord inférieur forme une courbe dans laquelle vient se placer son deuxième anneau qui est beaucoup plus petit et est hémisphérique.

L'anneau suivant est encore beaucoup plus petit et plus étroit.

Il est suivi d'un autre qui est infiniment plus grand, en forme d'écusson, dont les extrémités inférieures sont terminées par des pointes arrondies et récurvées.

Enfin le dernier anneau est très petit; il donne attache à deux petites lames plates, garnies de cinq fortes pointes crochues et pennées.

La coloration ainsi que celle du mâle est jaune pâle; on aper-

(1) Pl. 3, fig. 8.
(2) Pl. 3, fig. 4.
çoit à travers le test, chez la femelle, le commencement des tubes ovifères qui sont colorés en rose foncé.

Mâle inconnu.

Femelle (1). — Elle a 6 millimètres de longueur sur 4 de largeur. Son corps est large et trapu. Son bouclier céphalothoracique présente, en avant, deux lames frontales qui, comme celles de tous les Crustacés appartenant à la tribu des *Pandariens*, viennent se réunir au milieu du front, où elles forment une légère échancrure et sont terminées, à leur extrémité extérieure, par un petit lobe hérissé d'épines, sur lequel sont fixées les antennes qui sont courtes, larges et plates (2).

La carapace, en dessus, est divisée en deux parties par un sillon circulaire concentrique; on voit, au milieu de celle-ci, une large tache ovale d’un brun foncé qui émet en haut deux épatements de cette couleur, dirigés obliquement vers le front, qui est très élevé, laissant entre elles une dépression assez profonde en forme de gouttière. On aperçoit encore parallèlement, des deux côtés de ces épatements, deux autres gouttières qui sont aussi légèrement creuses.

Cette partie centrale de la carapace est constellée de petits points blancs qui paraissent être en relief et sont répartis systématiquement en deux groupes comme il suit:

1° Sept au milieu de la partie supérieure du bouclier forment un petit groupe circulaire dont un en haut tient la place ordinaire occupée par les yeux, et, comme il est un peu plus gros que les autres, il pourrait bien être destiné à en remplir les fonctions;

2° Huit autres placés circulairement sur le bord extérieur de cette tache brune, centrale, sont espacés, à égales distances, les uns des autres, mais les deux premiers qui occupent cette place en haut, et à la base extérieure des deux épaten-
ments de cette tache centrale, sont plus grands et de forme différente. Ils forment une petite ouverture qui est entourée d'un bord en relief et au milieu de laquelle on aperçoit un petit lobe arrondi qui paraît être fixé, par sa base, à l'un des côtés de cette ouverture (1). Le deuxième cercle concentrique atteint, en haut, la base des antennes et, en bas, rejoint les échancrures latérales qui se trouvent de chaque côté. Entre ces deux échancrures se trouvent trois lobes, deux latéraux, qui sont étroits et arrondis au bout, et celui du milieu, qui est échancré, à sa base, où l'on voit un petit lobe globuliforme et, de chaque côté de celui-ci, deux autres qui, en forme de croissant, sont emboîtés les uns dans les autres. Le troisième cercle qui comprend les deux autres n'offre rien de particulier. Ses extrémités latérales se terminent en pointes inféchies; il est de plus environné d'une membrane assez large, mince et légèrement plissée.

La partie thoracique est entièrement recouverte par deux lames minces, arrondies et dentelées à leur bord inférieur, et laissent entre elles, au milieu, une assez large échancrure. En dessous de celles-ci on aperçoit, les débordant, une autre lame, plus mince, qui en suit les contours, et, au-dessous de celle-ci, une troisième dont les bords la dépasse.

Vu en dessous (2) on aperçoit près des antennes et de chaque côté du bord frontal, une ventouse de moyenne grandeur (3).

Un peu plus bas se trouve la première paire de pattes thoraciques qui est très longue, formée de trois ou quatre articles dont le premier surtout est remarquable par la longueur excessive de sa griffe terminale, qui est en crochet et formée d'une matière chitineuse lui donnant une grande solidité (4).

Au milieu d'elles on aperçoit le rostre qui est de moyenne grandeur et qui est accompagné, de chaque côté, par un petit appendice cylindrique biarticulé.

(1) Pl. 5, fig. 17.
(2) Pl. 5, fig. 16.
(3) Pl. 5, fig. 16 et 18.
(4) Pl. 5, fig. 16 et 19.
Plus bas, et de chaque côté, se trouvent les deuxièmes pattes thoraciques, longues et grêles, formées de deux articles dont le dernier se termine en pince propre à saisir les objets. On voit aussi, à la base de ces pattes, comme à celles de la troisième paire que je vais décrire, une petite ventouse.

La troisième patte thoracique est très robuste et la plus forte de toutes. Elle est formée de trois articles cylindriques et très gros, terminés par une légère cavité dans laquelle se meut une sorte de pouce, en forme de boule pédonculée, qui, en se rabattant dans cette cavité, est destiné à saisir les objets et à les retenir.

Un peu plus bas, on aperçoit deux lames ovales, placées obliquement, qui sont garnies de trois ventouses également espacées. Au milieu de celles-ci et verticalement on voit une autre ventouse un peu plus grande, suivie d’une autre qui est encore plus grande, mais oblongue. Plus bas, sont deux lames plates, placées de chaque côté de celles-ci; et sur lesquelles se trouvent trois petites ventouses, savoir : deux en haut, placées l’une près de l’autre; et la troisième un peu plus bas. On aperçoit aussi, de chaque côté de celles-ci et extérieurement, les lames des pattes natatoires.

La partie inférieure du corps se termine par deux lames juxtaposées, au milieu, qui sont plates, ovales, dentelées au bord et garnies de cils. En dehors d’elles sont d’autres lames plates, beaucoup plus grandes et plus larges, qui sont également dentelées sur les bords et ciliées; et enfin une autre lame, encore plus grande, et formant, autour de celle-ci, une marge assez large.

Coloration. — Le bouclier céphalique est de couleur jaunâtre très vive, ayant au milieu une tache ovale d’un noir rougeâtre, constellée de points blancs et traversée sur les côtés par deux petites lignes parallèles de la même couleur. La base du thorax est également d’une couleur jaune brillante, ainsi que la base des deux grandes squames, qui y sont adhérentes,
dont le reste est brun rougeâtre, clair, moucheté de petites taches blanches. Elles sont, en outre, couvertes de petits poils courts et rudes.

Les lames qui dépassent celles-ci sont blanches.

En-dessous, la totalité du corps est de couleur jaunâtre, très pâle. Les parties chitineuses des premières pattes thoraciques, ainsi que celles des troisièmes pattes sont jaunes

Habitat. — Trouvé un seul exemplaire de ce Crustacé, le 29 mars 1860, sur le corps du Squale _Aiguillat_ de Cuvier (_Acanthias vulgaris_); depuis je n'ai pas pu m'en procurer d'autres.

§ 2. — Physiologie.

Genre _NOGAGUE_ (1).

Ainsi que je l'ai dit au début de ce mémoire, je me propose de démontrer que c'est à tort que l'on a rangé dans le genre _Calige_, le genre _Nogague_, qui, selon moi, doit appartenir aux _Pandariens_.

Au premier coup d'œil, il est vrai, la forme du bouclier céphalique paraît, dans son ensemble, se rapprocher de celle des _Caligiens_; mais en l'examinant avec attention, on voit que les sillons linéaires qui en indiquent les divisions ne sont pas disposés de la même manière, et que les extrémités inférieures de la carapace, en s'écartant considérablement, produisent, de chaque côté, à sa base, de très grandes échancrures que l'on ne trouve pas aussi prononcées chez les Crustacés auxquels je les compare.

On remarque aussi que l'anneau qui suit la carapace et qui est très petit et très étroit, ne donne pas, comme cela a lieu pour les _Caliges_ et les _Trébies_, d'attaches à ces longues pattes grêles, terminées par plusieurs griffes, qui sont spéciales à ces deux genres. Enfin que le dernier anneau thoracique n'est pas, comme chez ceux-ci, terminé par un long tube cylindrique, portant à son extrémité l'abdomen; et les deux lames nata- toires qu'il présente, sont très petites comparées à celles des

(1) Pl. 4, fig. 1 et 2.
Nogagues qui sont, au contraire, très larges, très plates et garnies de cinq fortes épines divergentes.

On remarque enfin qu’au lieu d’yeux juxtaposés, ils les ont, au contraire, séparés (1) les uns des autres, comme cela a lieu chez les Pandariens, et qu’il y a même, un peu plus bas au milieu, un point oculaire, plus petit, ressemblant aux sternomates (2).

La surface inférieure présente encore des différences plus nombreuses et plus caractérisées. Les lames frontales, qui sont larges et presque horizontales, n’offrent, au milieu, à l’endroit de leur réunion, aucune échancrure et, comme chez les Trébies, elles n’ont pas ce petit organe cupuliforme des Caliges que l’on suppose remplir les fonctions de ventouses.

Les premières et les deuxièmes pattes thoraciques, comparées à celles des Nogagues, n’offrent pas de différences sensibles; mais il n’en est pas de même des troisièmes pattes dont la conformation se rapproche de celles des Pandariens (3).

On ne voit pas non plus, chez ces Crustacés, les appendices cornés et les fourches sternales qui existent chez ceux-ci; mais ce qui les distingue surtout d’une manière toute spéciale et exige, selon moi, leur séparation de ces deux genres, c’est la conformation particulière de leur système buccal qui est celui des Pandariens, « un suçoir » conique, destiné à percer la peau épaisse des Squales sur lesquels ils vivent, et sans le secours duquel il leur serait impossible de prendre leur nourriture (4).

J’ai, en effet, visité, avec le plus grand soin et depuis un assez grand nombre d’années, les Poissons de toutes les espèces qui fréquentent nos côtes et je suis parvenu à trouver vingt

(1) Cette règle n’est pas sans exception, car dans les Caliges du Labrax Lupus, du Zeus faber, du Labrus Donovani, du Morkua fusca, du Raia batis, du Lota Molva et chez une seule Trébie de l’Orthogariscus mola, les yeux sont séparés par un petit appendice pointu dont quelquefois le sommet est tronqué.

(2) Pl. 4, fig. 1.

(3) Pl. 4, fig. 2.

(4) C’est également par cette raison que je crois que l’on s’est trompé sur ARTICLE N° 3.
Caliges différentes, ainsi que dix Trébies ; et toutes, sans aucune exception, ont été recueillies sur le corps ou sur les branches de Poissons à peau molle, conséquemment autres que les Squales.

Il ne me reste plus, pour compléter ce que j’ai dit du Nogague de l’Aiguillat, qu’à parler de l’embryon que j’ai représenté dans ma planche n° 1, réuni à sa mère (1) par un prolongement frontal, filiforme, et de tâcher de trouver l’explication de cette singulière particularité.

J’ai d’abord exprimé l’opinion que cet embryon pourrait bien être un mâle qui, joint à une femelle adulte, douée conséquemment de moyens de locomotion plus puissants que les siens, pouvait l’entraîner sur un autre poisson et aller ainsi, avec lui, fonder une autre colonie et contribuer par là à favoriser la reproduction et la dissémination de l’espèce.

Mais si cette loi est établie, elle doit nécessairement s’étendre à toute l’espèce, et alors, comment se fait-il que l’on rencontre si rarement des individus dans ces conditions ? C’est probablement à raison de leur extrême petitesse, qui les fait échapper à la vue, ou à la fragilité du lien qui sert à les fixer sur un objet quelconque et qui se rompt facilement.

D’un autre côté, ce n’est qu’à la deuxième ou troisième mue que cette évolution a lieu, et c’est avec une peine infinie que l’on parvient à conserver des embryons vivants jusqu’à cette époque.

J’ai fait cependant, dans le but de suivre ces curieuses évolutions, de nombreuses et persistantes recherches; mais je ne suis arrivé qu’une seule fois à me procurer un individu isolé, muni de ce singulier prolongement frontal, dont l’autre extrémité n’était pas encore fixée et qu’il transportait péniblement.

L’habitat de la Calige rapace, décrite page 453, planche 38, figure 9, t. III, de l’Histoire naturelle des Crustacés, que l’on dit avoir été trouvée sur la peau d’un Squale. Je pense aussi qu’une erreur semblable a été commise pour la Trébie caudigère, décrite, dans le même volume, page 458, ainsi que celle à front épineux, planche 38, figures 1-8, page 459 du même ouvrage, auxquelles on donne la même origine.

(1) Pl. 4, fig. 1, 3 et 4.
Il résulte donc de ces observations cette bien singulière et remarquable particularité : c'est que déjà, dès le début de leur existence, ces petits êtres apprécient la situation dans laquelle ils se trouvent ; et que s'ils n'émettent pas ces appendices de fixation qui leur sont si nécessaires, c'est qu'ils reconnaissent qu'ils ne seraient pas placés dans des conditions convenables pour assurer leur existence.

Mais comment ces embryons font-ils pour utiliser ces appendices ?

Je pense qu'ils doivent, en cela, agir comme le font les Cirrhipèdes, qui établissent, à l'endroit où ils veulent se fixer, une base solide qui sert de point d'appui à leur pédoncule.

Ces embryons, en effet, se servent aussi d'un taille à l'aide duquel ils soudent solidement l'extrémité de leur appendice frontal à l'objet qu'ils choisissent, de manière qu'il puisse résister aux tiraillements et aux secousses qui pourraient les en détacher ; il arrive cependant un moment où l'embryon, ayant passé par toutes les phases des transformations qu'il devait subir pour arriver à l'état d'adulte, a besoin de sa liberté d'action. Dans ce cas, il rompt le cordon qui lui servait d'attache, mais néanmoins conserve encore plus ou moins longtemps des fragments de ce lien dont il ne reste plus que la base (1) et dont les traces disparaissent peu à peu (2). Le bouclier céphalique change aussi de forme et, au lieu d'être en proue, s'arrondit ; les antennes, qui étaient abaissées et couchées le long du corps, se redressent et deviennent horizontales. Il prend enfin tous les caractères qui spécialisent les adultes.

(1) C'est d'après un individu qui se trouvait dans cet état de transition que Burmeister, qui l'avait pris pour un adulte, créa le genre Chalime (Mémoire des curieux de la nature de Bonn, E. 17 et p. 294, pl. 13, fig. 13-18), et que mention en a été faite dans l'Histoire naturelle des Crustacés, 3e vol., p. 458 et 459, de M. Milne Edwards ; mais, par suite de la découverte que j'ai faite, j'ai signalé cette erreur dans une lettre qui a été insérée dans les Annales des sciences naturelles de 1868, 4e série, t. IX, n° 2-5.

(2) Ces traces rudimentaires sont particulièrement visibles dans le dessin que j'ai donné du Lepimacre Jourdani, pl. 1, fig. 8 et 9; pl. 3, fig. 4.

ARTICLE N° 3.
CRUSTACÉS RARES OU NOUVEAUX.

Genre LÉPIMACRE.

Le nouveau genre Lépimacre (1), que j’ai créé pour le Crustacé dont j’ai donné la description et la figure, se rapproche beaucoup du genre Dinemoure et particulièrement du Dinemoura Lamnae de M. Baird (British entomosstraça, tab. XXXVII), autant que toutefois j’en puis juger par le calque que j’ai pu m’en procurer, sans pouvoir consulter le texte de l’ouvrage, et d’après un dessin dont les dimensions étaient trop réduites pour me mettre à même d’être bien fixé à cet égard, mais suffisant pourtant pour que je puisse constater des différences assez sensibles pour justifier la séparation que j’ai faite de ces deux genres.

Dans ce dessin les lames frontales sont très peu accusées; le bouclier céphalique est plus large et plus arrondi que n’est celui du Crustacé auquel je le compare. Les deux squames qui le suivent ne sont pas précédées d’un rétrécissement, formé de plusieurs petits anneaux, des deux côtés desquels sont deux échancrures latérales que l’on constate aussi dans le genre Nogague; mais elles sont plus étroites et de forme ovale, et ne sont pas accompagnées, latéralement, de ces deux larges lames plates qui font, de chaque côté, une saillie très remarquable; enfin, les deux lames verticales qui descendent jusqu’à l’extrémité du corps, sont plus longues, plus plates et recourbées en dehors, de manière à ménager, en s’entortant au milieu et à leur extrémité, un petit espace qui permet d’apercevoir l’abdomen et ses deux lames natatoires, et de présenter, en dehors de chaque côté, une échancrure assez profonde pour diminuer leur largeur, jusqu’à leur extrémité, qui est terminée par quatre petites dents cornées, recourbées en forme de griffe. Je dois aussi signaler à l’attention deux petits lobes plats (2) qui bordent les échancrures du bouclier

(1) Pl. 1, fig. 8.

(2) Les trois appendices petits et ronds que l’on voit au milieu du bord frontal sont des reliquats, encore non disparus, de la base de l’appendice frontal, qui, un peu plus tard, s’effaceront et ne présenteront plus alors, comme cela a lieu chez les adultes, qu’un seul petit tubercule arrondi.
céphalique et présentent, en dessus et en dessous, deux pointes qui, en se rejoignant à leur extrémité, semblent destinées à constituer une sorte de pince qui peut être utilisée comme moyen de fixation.

En dessous, on voit que le genre Lépimacre se rapproche du genre Pandare par la présence des ventouses que l'on ne rencontre, ni chez les Caliges, ni chez les Trébies, ni chez les Nogagues.

La première est placée près du bord frontal et à la base de l'antenne. Il y en a une autre au bas de la première patte thoracique, ainsi qu'au milieu de l'article fémoral de la troisième patte dont le deuxième se termine par une simple griffe crochue, très forte, qui se rabat sur elle-même et qui, par cette conformation, s'éloigne des genres voisins.

On aperçoit, au bas du bouclier céphalique, une sorte de plaque ovale contenant plusieurs ventouses de différentes formes et dimensions qui, sous ce rapport, se rapprochent des Dinemourres, du moins de celui de l'Emissole que j'ai décrit (1).

Cette plaque est mobile ; elle est fixée à la carapace par son extrémité supérieure, seulement elle peut, à l'aide de cette disposition, s'appliquer plus hermétiquement sur les corps sur lesquels elle doit se fixer.

En somme, en comparant les Nogagues aux Lépimacres, on voit que les premiers, par différents caractères et notamment par l'absence de ventouses, et par la conformation générale de leur carapace, se rapprochent plus des Caligiens que des Pandariens, tandis que les Lépimacres, au contraire, pour la forme de leur bouclier céphalique, celle des anneaux thoraciques, leurs squames et leurs ventouses, se rapprochent bien plus de ces derniers et établissent, entre ces deux genres, une transition qui me paraît justifiée.

(1) Revue des sciences naturelles de Montpellier, 5 juin 1880.

article no 3.
Les Crustacés appartenant au genre Pandare (1), dont on n'a encore décrit que les femelles, se distinguent des parasites qui font partie de la même tribu, par la prééminence de leur bord frontal qui s'avance de manière à presque couvrir au milieu les lames qui viennent s'y rejoindre. Leur corps n'offre aucun rétrécissement et leur bouclier céphalique est entier et ne présente aucune trace de division ni d'échancrures latérales à sa base, qui sont si caractéristiques dans les autres genres. Le reste du corps est recouvert de trois rangées de squames superposées et est terminé par une lame arrondie, des deux côtés de laquelle sortent, en dessous, deux appendices plats, pointus et triangulaires qui forment les lames natatoires (2).

Les yeux sont extrêmement petits, placés à quelque distance du bord frontal et séparés les uns des autres (3).

En dessous, ces parasites présentent une particularité très remarquable et qui leur est spéciale. Elle consiste en la présence de six ventouses (4) d'une conformation particulière, qui sont placées, savoir : deux de chaque côté, près du bord frontal; et les deux autres chacune à la base du bouclier, près des pointes latérales qui le terminent. Ces ventouses sont relativement très grandes; elles sont ovales, saillantes et ampuliformes. Elles constituent un puissant moyen d'adhérence, en s'appuyant très hermétiquement sur la surface sur laquelle elles se fixent et en faisant le vide par le retrait ou la contraction qu'elles produisent au centre. En outre, deux de celles qui sont placées en dedans, près du bord frontal, sont pourvues, pour compléter leurs moyens de fixation, du concours des deux premières pattes thoraciques, qui sont armées de

(1) Pl. 5, fig. 1 et 2.
(2) Pl. 5, fig. 2.
(3) Pl. 6, fig. 15.
(4) Pl. 5, fig. 2 et 3.
griffes puissantes et récurvées, qu'elles peuvent enfoncer profondément dans la peau (1).

De plus, des ventouses d'un autre genre, mais beaucoup plus petites que celles-ci, viennent encore compléter leur action. Elles sont de deux sortes : l'une, qui est assez grande et arrondie, ressemble aux ventouses ordinaires et forme une cupule entourée de bords saillants et placée au milieu du corps, à la base du bouclier céphalique (2) ; les autres, plus petites, allongées, creuses, striées en dedans et auriformes (3), sont placées à la base de la deuxième et troisième patte céphalo-thoracique.

La constatation des sexes est très difficile chez ces Crustacés lorsqu'ils sont encore à l'état jeune.

Le mâle (4), ou du moins celui que je crois tel, est relativement très petit. Son corps est divisé en plusieurs anneaux bien séparés les uns des autres, afin de favoriser ses mouvements et de lui permettre de remplir ses fonctions. Le bouclier céphalique est relativement plus étroit, ainsi que son abdomen, et son corps est terminé par deux petites lames natatoires écartées l'une de l'autre et bordées d'épines divergentes et pennées.

La femelle jeune (5) a, comme le mâle, le corps formé d'anneaux qui sont aussi très distincts les uns des autres ; elle a besoin, comme lui, de trouver une position convenable avant de se fixer à demeure comme le font les adultes. Son bouclier céphalique est relativement plus large et son abdomen aussi ; de plus elle a, comme lui, le corps terminé par deux petites lames natatoires divergentes. Mais ce qui fixe d'une manière certaine sur sa sexualité c'est la présence précoce de tubes ovifères.

Chez la femelle adulte le corps est, au contraire, entièrement recouvert de larges squames superposées qui empê-
CRUSTACÉS Rares ou NOUVEAUX.

Chent de voir les anneaux dont il est formé, et est terminé, en dessous, par de larges lames natatoires réunies entre elles et à la base desquelles on aperçoit, de chaque côté, des utricules copulatrices (1).

Chez les mâles, ainsi que chez les jeunes femelles, la conformation des pattes natatoires n'est pas non plus la même que chez les adultes. Chez les premières elles sont biramées et multiarticulées (2), tandis que chez les adultes elles sont formées d'un seul article (3).

En somme, les différences qui existent entre les mâles et les jeunes femelles de ces Crustacés et les femelles adultes sont si grandes, que l'on serait tenté de ne pas croire à leur parenté s'ils n'avaient été recueillis ensemble sur les mêmes Poissons, et si certaines particularités de leur organisation, telles que les ventouses, les yeux et les pattes, n'indiquaient suffisamment la même origine.

Genre CÉCROPS (4).

La femelle du Cécrops que je décris, car je n'ai pu me procurer le mâle, a le corps large, trapu et séparé au milieu par un rétrécissement qui le partage en deux parties presque égales : le bouclier céphalique et les lames inférieures qui recouvrent le reste du corps.

La surface supérieure, qui est très bombée et dont j'ai donné une description détaillée, présente au haut et de chaque côté du bouclier céphalique, une petite ouverture ovale (5) entourée d'un bord saillant, laissant apercevoir, au milieu, un petit lobe arrondi autour duquel semble exister un creux ou un espace vide. J'avais pensé d'abord que ce devait être les yeux, mais leur position un peu basse, relativement à l'endroit où l'on a coutume de les trouver; leur écartement, relative-

(1) Pl. 5, fig. 2 et 13.
(2) Pl. 6, fig. 4, 5, 6, 7, 8, 9 et 10.
(3) Pl. 5, fig. 7, 8 et 9.
(4) Pl. 5, fig. 15 et 16.
(5) Pl. 5, fig. 17.
moment très grand, m'ont fait penser que ce pourrait bien ne pas être ces organes, d'autant plus que je vois à leur place ordinaire un petit point blanc, saillant, entouré de six autres un peu plus petits, qui, à raison de la place qu'ils occupent, me semblent plutôt destinés à remplir ces fonctions. Je n'ai pas non plus pu m'assurer que la carapace fût perforée à cet endroit, de sorte que je me trouve réduit à signaler simplement cette singularité sans pouvoir lui donner une explication suffisante (1).

La face inférieure du corps est très remarquable par la présence de nombreuses ventouses, de grandeurs différentes, mais toutes de la même espèce, dont elle est parsemée et qui sont au nombre de dix-sept. Mais dans ce nombre il n'y en a aucune du genre de celles qui sont ampuliformes et qui sont spéciales au genre Pandare.

La femelle que j'ai décrite n'avait pas d'œufs, mais comme dans les genres voisins des Cécrops et des Lœmargues, ils doivent être protégés par des lames et le bouclier thoracique.

Les premières pattes thoraciques sont remarquables par leur longueur et surtout celle du premier article qui est terminée par un fort crochet formé d'une substance chitineuse qui doit leur donner une grande solidité (2). La troisième patte thoracique est également digne d'attention ; elle est terminée par une petite cavité dans laquelle se meut un petit appendice arrondi au bout qui, en basculant et en s'appuyant sur le fond de cette petite cavité, paraît destiné à saisir les objets et à les retenir (3).

§ 3. — Biologie.

J'ai bien peu de choses à dire de la manière de vivre des Crustacés que je viens de décrire, attendu qu'il est très diffi-

(1) L'ensemble de ce petit lobe, sa forme et sa position sur le céphalothorax ont quelques ressemblances avec les yeux composés des Xyphosures ; mais comme ceux dont je m'occupe étaient trop petits pour que j'aie pu constater, chez eux, la présence d'une cornée, je ne puis que signaler cette ressemblance, sans affirmer qu'elle soit complète.
(2) Pl. 5, fig. 13 et 20.
(3) Pl. 5, fig. 16 et 20.

ARTICLE N° 3.
cile de les recueillir vivants. Les Poissons sur lesquels on les trouve n’étant pas, comme ceux des autres espèces, enduits d’une sécrétion mucilagineuse qui, en lubrifiant la peau, la rend plus souple et plus pénétrable et facilite ainsi les fonc-
tions des organes destinés à la perfore. Privés de ces avant-
tages et insuffisamment fixés sur une enveloppe épaisse et coriace, ils ne tardent pas, lorsqu’ils sont sortis de l’eau, à s’en détacher et à tomber à terre, ou dans le fond des bateaux, et alors, à raison de leur extrême petitesse; il est bien difficile de les retrouver. J’ai réussi néanmoins quelquefois à m’en procurer de vivants, mais je n’ai pu les con-
server dans cet état que très peu de temps. Sous ce rapport ils offrent une bien grande différence avec les Caliges et les Trébies, voire même les Cécrops et les Lœmargues que j’ai pu garder vivants quelque temps ; mais je dois ajouter que ces dernières vivent sur le Mola Orthagoriscus, dont la peau, quoique très épaisse et adipeuse, est cependant, comme celle des autres Poissons ordinaires, facile à pénétrer.
Toutefois, on remarque que les parasites des Squales re-
cherchent de préférence les endroits du corps où la peau est la plus mince, sans doute pour rendre leur travail moins pénible, aussi les trouve-t-on plus fréquemment fixés à l’ori-
gine des nageoires, sous les aisselles et sur les bords des or-
fices génitaux, voire même sur les yeux (1).
Les embryons de ces Crustacés sont bien plus vivaces que les adultes, aussi peut-on obtenir leur éclosion après la mort de ceux-ci et les conserver encore quelque temps pourvu que l’on ait soin de les tenir dans de l’eau bien fraîche; néan-
moins, quelques précautions que l’on ait, il est bien difficile de leur faire atteindre leur deuxième et encore moins leur troisième transformation.

(1) C’est sans doute à raison de la plus grande épaisseur de leur peau que je n’ai jamais rencontré ces parasites sur les Scyllium canicula, cotulus et annu-
latus, qui cependant sont des Squales que l’on trouve plus fréquemment que les autres dans notre localité.
§ 4. — Systématisation.

J'ai donné les motifs pour lesquels j'ai cru devoir proposer de retirer le genre Nogague de la tribu des Caligiens pour le mettre dans celle des Pandariens, dans laquelle je crois qu'il serait mieux placé.

J'ai également fait valoir les raisons qui m'ont déterminé à créer un nouveau genre auquel j'ai donné le nom de Lépinacre, en faveur d'un Crustacé qui ne m'a paru pouvoir être admis dans aucune des catégories existantes.

Je me propose actuellement de présenter quelques observations sur la dénomination des Siphonostomiens donnée à un certain nombre de Crustacés auxquels, selon moi, elle ne semblerait pas convenir.

Le nom de Siphonostomiens, en effet, a été consacré, avec raison, ainsi que le mot l'indique, aux Crustacés qui, comme les Pandariens, sont munis d'un appareil spécial, d'une sorte de trompe, d'un siphon, en un mot, qui leur permet, après avoir percé la peau des Poissons sur lesquels ils vivent, de pénétrer dans les chairs pour y puiser les fluides destinés à leur alimentation. Or, il n'en est pas ainsi pour d'autres Crustacés que l'on a rangés dans la même catégorie, bien que la conformation de leur bouche soit tout à fait différente : je veux parler des Arguliens et des Caligiens.

Ces Crustacés, au lieu d'avoir, comme les Siphonostomiens, une sorte de bec rigide (1), pointu et apte à perforer, n'ont au contraire qu'une sorte de museau (2) gros, court, obtus à son extrémité, qui est garni de lèvres molles et charnues destinées à s'appliquer sur la peau à sa superficie, pour y exercer une succion, mais incapables d'y pénétrer profondément.

Si, en effet, on enlève avec précaution ou que l'on écarte les lèvres qui entourent l'orifice buccal des Caligiens (3), on aperçoit immédiatement, au lieu de longs stylets rigides,

(1) Pl. 5, fig. 5 ; pl. 3, fig. 25, 26 et 27.
(2) Pl. 4, fig. 16.
(3) Pl. 4, fig. 17.

ARTICLE n° 3.
pointus, dentelés à leur extrémité (1), des mâchoires circulaires garnies de dents très aiguës et très serrées, à l’aide desquelles ils entament la peau et y font une plaie qu’ils sucent ensuite (2). C’est donc une manière tout à fait différente de procéder : c’est une morsure au lieu d’une piqure, et si, en somme, le résultat est le même, on ne saurait cependant conserver la même dénomination à des organes et des procédés qui ne se ressemblent pas.

Ce ne sont pas, du reste, les seules différences qui existent entre ces Crustacés ; elles sont assez nombreuses et assez tranchées pour que l’on sente la nécessité d’en tenir compte.

Je proposerai donc de conserver aux Siphonostomiens (3) la dénomination qui, à raison de la conformation particulière de leur bouche leur appartient de droit, et de donner le nom de Rostrostomiens à ceux qui se trouvent dans la catégorie des Arguliens et des Caligiens.

(1) Pl. 6, fig. 12 et 28.

(3) Cette catégorie devra nécessairement comprendre les nouveaux genres décrits dans le remarquable ouvrage publié par M. le professeur T. Thorell : Bidrag till Kannedomen om Krustaceer som hefva i aster of Slogt et Ascidia ; savoir :

Ascomyzon Lilljeborgii, p. 78-80, pl. 14, fig. 21 ;
Dyspontius striatus, p. 81-82, pl. 14, fig. 22.

Par les mêmes motifs, il y aura lieu aussi à tenir compte des découvertes faites et publiées par M. le professeur E. Stwardson Brady dans son très recommandable ouvrage : A monograph of the free and semi-parasitic cope-poda of the British Islands, vol. III ; savoir :

1. Acantiophorus sculatus, p. 69-71, pl. 90, fig. 1-10 ;
2. Artotrogus Bockii, p. 60-61, pl. 91, fig. 1-9 (Ascomyzon Lilljeborgii (Thorell)) ;
3. Artotrogus Normani, p. 63-64, pl. 91, fig. 12-15, et pl. 92, fig. 14 ;
3. Dyspontius striatus (de Thorell), p. 66-68, pl. 92, fig. 1-13 ;
2. Artotrogus magniceps, p. 61-63, pl. 93, fig. 1-9 ;
3. Artotrogus Normani, p. 69-64, pl. 93, fig. 10 ;
4. Artotrogus Lilljeborgii, p. 64-65 (sans planche).
A ces observations je crois devoir en ajouter d'autres :

C'est à tort, selon moi, parce que cela peut être une cause d'erreur, que l'on donne au bouclier céphalothoracique le nom de tête, car évidemment on prend ici le tout pour la partie, attendu que la véritable tête n'est pas la carapace entière qui recouvre et protège tous les organes attachés à sa face intérieure, mais seulement un petit appendice de forme conique, qui est fixé en dessous, en haut et au milieu du bouclier céphalique par sa base occipitale de manière à conserver tous les mouvements nécessaires pour la diriger dans le sens qui lui est utile. La partie cérébrale et buccale de la tête émerge donc en dessous, mais les yeux sont placés en dessus de l'autre côté, précisément au-dessus de ceux-ci, avec lesquels ils sont nécessairement en communication directe.

Chez ces Crustacés les yeux ne sont pas pédonculés comme ils le sont chez la plupart des autres espèces; mais cet inconvénient se trouve atténué par une disposition particulière qui leur est propre. Ils sont placés sur une petite éminence de laquelle ils peuvent dominer toute la surface sur laquelle ils sont obliquement fixés et, par ce moyen, embrasser une certaine étendue (1) pour compléter leur action, ou voit souvent au milieu et entre eux un autre organe oculaire, mais d'une autre espèce, désigné sous le nom de stemmate, dont les fonctions ne s'exercent que directement et sans divergence latérale.

Enfin je crois devoir insister de nouveau pour que l'on ne continue pas à donner aux membres du système appendiculaire de ces Crustacés, des dénominations qui ne sont nullement en rapport avec les fonctions qu'ils remplissent.

La qualification de pattes-mâchoires donnée aux trois paires de pattes thoraciques qui environnent la bouche ne leur est nullement applicable, attendu que ces Crustacés, ne se nourrissant que de substances liquides, n'ont, conséquemment, pas besoin de l'action des pattes-mâchoires pour triturer ces aliments; de plus, il est à remarquer qu'elles sont placées à

(1) Pl. 6, fig. 14 et 19.

ARTICLE N° 3.
une assez grande distance de la bouche, pour qu’elles ne puissent y atteindre et lui être de quelque utilité; et qu’enfin leur conformation indique d’une manière évidente qu’elles ne sont pas destinées à ces fonctions, mais bien à assurer la fixation de ces parasites sur leur proie (1).

§ 5. Conclusion.

En résumé, d’après les observations que j’ai pu faire en étudiant et en décrivant les Crustacés dont je viens de parler, je crois qu’il y aurait lieu d’apporter, dans la classification des Peltocéphaliens, les modifications suivantes, en se conformant à l’ordre établi dans le tableau inséré à la page 436, du tome III de l’Histoire naturelle des Crustacés de M. Milne Edwards, auxquels j’ajouterai, à raison de la conformation de leur bouche, les Copépodes décrits récemment par MM. Thorell et Stewardson Brady dont je viens de mentionner les travaux.

ORDRE

FAMILLE

tribu

genres.

des Rostrostomes... { des Peltocéphales.

des Arguliens..... Argule.

des Caligiens..... Calige.

des Pandariens..... Trébie (2).

{ des Ascomyzontide.

des Artrologidæ... Dyspontiens (4).

{ des Artrologus...

(1) Cette opinion est en partie partagée par M. Ch. d'Orbigny, dans son Dictionnaire d'histoire naturelle, t. II, p. 680. Seulement, il se trompe, selon moi, du moins dans la transformation qu’il suppose être subie par les pieds-mâchoires qui ne se changent nullement, mais, au contraire, restent toujours ce qu’ils étaient: des organes destinés à fixer l’animal sur sa proie.

(2) Je supprime ici le genre Chalime qui n’est qu’un embryon et qui avait été pris pour un adulte; voy. le même ouvrage, p. 452.

(3) Ces genres ont été créés par M. Thorell.

(4) Ces genres ont été créés par M. Brady.
Enfin, je crois qu’il y aurait lieu de tenir compte des observations que j’ai faites sur le classement du genre *Nogague* (1) qui a été, à tort, selon moi, rangé parmi les *Caligiens*; attendu qu’il diffère de ceux-ci par la conformation en siphon de la bouche, ce qui implique conséquemment sa présence sur les Squales.

Je pense aussi, mais par une raison inverse, que la *Calige rapace* (2), *Trébie candigère* (3), celle à front épineux (4) et qui, par la description que l’on en a donnée, sont véritablement des *Caliges* et des *Trébies*, n’ont pu, ainsi qu’on le dit, avoir été trouvées sur les Squales, attendu que la conformation de leur bouche ne leur permettrait pas de percer la peau épaisse de ces Poissons, conséquemment d’y trouver leur nourriture.

Voici les caractères qui serviront à faire connaître le nouveau genre que je me propose d’établir.

Genre LÉPIMACRE.

Mâle inconnu.

Femelle. — Bouclier céphalothoracique clypeiforme, allongé et divisé en trois parties principales : celle du milieu et deux latérales. Celles-ci légèrement rétrécies au milieu, et terminées par des pointes aiguës et récurvées, produisant, à sa base, deux grandes échancrures dont les extrémités viennent rejoindre le thorax, lequel est divisé en plusieurs anneaux cylindriques, accompagnés, des deux côtés, de petites lames plates et incurvées à la base de celles-ci, quatre grandes lames larges, plates, dont les deux externes débordent d’un tiers celles qui sont au milieu. Celles-ci recouvrent, à leur base, deux autres lames également plates, très longues, divergentes, allant en

(2) Voy. le même ouvrage, p. 452.
(3) Voy. le même ouvrage, p. 458.

ARTICLE N° 3.
CRUSTACÉS RARES OU NOUVEAUX.

diminuant de largeur de la base à leur extrémité, qui est arrondie et terminée par quatre petites griffes. Lames frontales étroites et ne formant pas de creux au milieu. Front présentant, en dessus, plusieurs lignes concentriques. Yeux petits et séparés.

En dessous, tête siphonostome, allongée, des deux côtés de laquelle sont trois paires de pattes dont la première, qui est accompagnée d’une ventouse, est longue et armée d’une griffe contournée et ayant une ventouse à sa base. Plus bas que celle-ci, est la deuxième paire, qui est longue, grêle et didactyle ; puis vient la troisième, qui est assez forte et terminée par une griffe solide et récurvée. L’article fémoral est garni d’une ventouse.

A la base du bouclier céphalothoracique se trouve une sorte de plastron, ovale et tronqué à sa base, garni de sept ventouses de grandeurs différentes. Plus bas que celle-ci et au milieu du thorax, sont deux grandes ventouses, dont l’une est ronde et l’autre ovale, des deux côtés desquelles sont trois paires de pattes biramées. Abdomen long et étroit et cylindrique, formé de trois anneaux, dont le dernier, qui est le plus court, est terminé par deux lames plates divergentes, armées de cinq fortes épines ciliées.

Habitat. — Trouvé un seul exemplaire sur le Squale nez (Lamna Cornubica).

EXPLICATION DES PLANCHES.

Planché 1.

Fig. 1. Nogague, femelle de l’Aiguillat, grossie 18 fois, vue en dessus, traînant à sa remorque un embryon qui lui est attaché par un pédoncule.
Fig. 2. Le même, au même grossissement, vu en dessous.
Fig. 3. L’embryon de cette Nogague amplifié 20 fois, vu en dessous.
Fig. 4. Le même, au même grossissement, vu en dessous.
Fig. 5. La première patte thoracique du même, mais très grossie.
Fig. 6. Première patte de la femelle, très grossie.
Fig. 7. Patte natatoire de la même, très amplifiée.
Fig. 8. Lépimacre Jourdain, femelle, grossie 20 fois, vue en dessus.

ANN. SC. NAT., ZOOL., JUIN 1883. XV. 17. — ART. N° 3.
Fig. 9. Le même, au même grossissement, vu en dessous.
Fig. 10. Tête du même très amplifiée, vue en dessous.
Fig. 11. Extrémité inférieure très grossie de la squame qui recouvre l'abdomen du même, montrant les petites griffes dont il est armé.
Fig. 12. Partie inférieure et latérale du bouclier céphalothoracique, très grossie, rejoignant l'avant-dernier anneau de celui-ci, armés l'un et l'autre de pointes acuminées dirigées l'une vers l'autre.
Fig. 13. Extrémité, très grossie, d'une lame frontale de la même, montrant l'antenne qui s'y trouve fixée et la ventouse placée en dessous.
Fig. 14. Première patte thoracique de la même, très grossie, à la base de laquelle se trouve une ventouse.
Fig. 15. Troisième patte thoracique de la même, très grossie, à la base de laquelle se trouve une ventouse.
Fig. 16. Tête très amplifiée et entière, vue en dessus, d'une Calige, avec la bouche entière recouverte de sa lèvre supérieure.
Fig. 17. La même tête, à laquelle on a enlevé la lèvre supérieure pour montrer, en dedans, les mâchoires circulaires dont elle est armée.

Planche 2.

Fig. 1. Pandare de l'Aiguillat, amplifié 10 fois, vu en dessus.
Fig. 2. Le même, au même grossissement, vu en dessous.
Fig. 3. Ventouses ampuliformes, très grossies, du bord frontal, vues en dessous, accompagnées des deux premières pattes thoraciques, aplaties par l'effet du compresseur.
Fig. 4. Une de ces ventouses, très grossie, entourée d'une des premières pattes céphalothoraciques dans la position qu'elle occupe habituellement lorsqu'elle n'est pas développée.
Fig. 5. La bouche en siphon du même, très grossie.
Fig. 6. Lobe, très grossi, servant de base à l'antenne.
Fig. 7. Premières pattes natatoires du même, très grossies, réunies à leur base par une bande transversale qui les maintient fixées au thorax.
Fig. 8 et 9. Deuxième et troisième paires de pattes de même espèce et au même grossissement.
Fig. 10. Appareil de fixation, qui est placé transversalement à la base du bouclier céphalique et représenté par une tige qui émet, de chaque côté, des appendices recourbés ainsi que de petits crocs, destinés à saisir et accrocher les objets et est terminé par une longue griffe qui contourne une ventouse ampuliforme placée à l'extrémité externe du bouclier céphalothoracique.
Fig. 11. Tube ovifère, très grossi, du même.
Fig. 12. La larve du même, très grossie, à la sortie de l'œuf.
Fig. 13. Utricule servant de poche copulatrice.
Fig. 14. Petite ventouse auriforme, très grossie, placée à la base de chaque patte natatoire.
Fig. 15. Cécrops de l'Aiguillat, vu en dessus, amplifié 9 fois.
Fig. 16. Le même, vu en dessous, au même grossissement.
CRUSTACÉS RARES OU NOUVEAUX.

Fig. 17. Petit orifice, très grossi, qui se trouve placé de chaque côté, à quelque distance du bord frontal.

Fig. 18. Lame frontale, très grossie, avec l’antenne qui y est attachée et au-dessous de laquelle se voit une ventouse.

Fig. 19. Première patte céphalothoracique, très grossie, terminée par une forte griffe chitineuse et recourbée.

Fig. 20. Troisième patte céphalothoracique, très amplifiée et vue de face.

PLANCHE 3.

Fig. 1. Pandare du Squale bleu, individu femelle adulte, vu en dessus et amplifié 8 fois.

Fig. 2. Fragments du bord extérieur de sa carapace.

Fig. 3. Pandare uniclor, femelle adulte, vue en dessus et amplifiée 8 fois.

Fig. 4. Jeune femelle de la même, vue en dessus et grossie 22 fois.

Fig. 5. Mâle de la même espèce, vu en dessus, grossi 20 fois.

Fig. 6. Pandare de l’Émissole, jeune mâle? vu en dessus et grossi 24 fois.

Fig. 7. Le même, vu en dessous, mais très amplifié, 26 fois.

Fig. 8. Jeune femelle du même, vue en dessus et grossie 27 fois.

Fig. 9. Pandare de l’Aiguillat, jeune mâle? amplifié 17 fois.

Fig. 10. Pandare de l’Aiguillat, jeune femelle amplifiée 20 fois.

Fig. 11. Pandare femelle de l’Aiguillat, mais non adulte, vue en dessus et amplifiée 20 fois.

Fig. 12. Siphon du Pandare de l’Aiguillat, très grossi et comprimé, montrant les styles pointus et dentelés qui sont contenus dans le tube de ce siphon.

Fig. 13. Deuxième patte didactyle, très grossie, du même.

Fig. 14. Yeux, très grossis, du Pandare de l’Émissole, réunis sur une petite éminence qui leur permet de voir plus facilement autour d’eux; les deux yeux latéraux sont complétés par la présence, au milieu, d’un stemmate.

Fig. 15. Yeux du Pandare de l’Aiguillat, très grossis et posés obliquement sur la surface de la carapace.

Fig. 16. Siphon comprimé du même, montrant, en dedans et à son extrémité, une pointe aiguë terminant une tige grêle sur laquelle elle est fixée.

Fig. 17. Autre extrémité d’un siphon comprimé qui paraît terminé par deux petites mandibules.

Fig. 18. Yeux du Pandare de l’Émissole, séparés les uns des autres et portés obliquement en dessus de la carapace.

Fig. 19. Les mêmes organes du Pandare de l’Aiguillat, très grossis, fixés sur une petite élévation et dirigés en avant.

Fig. 20. Première patte très grossie, de ce Crustacé, ayant une ventouse à sa base.

Fig. 21. Deuxième patte, très grossie, vue de profil, du Pandare de l’Émissole.

Fig. 22. La même, mais vue de face, montrant à son extrémité une petite cavité.

Fig. 23. La même, mais vue de face, montrant à son extrémité une petite cavité dans laquelle sont contenus des appendices plats et ronds, qui, en se combinant, peuvent saisir et se maintenir sur des objets.
Fig. 24. Siphon d’un jeune Pandare de l’Aiguillat soumis à la compression et terminé aussi par des sortes de mandibules.

Fig. 25. Tête de celle-ci, très grossie et vue de face, et abaissée sur la face inférieure du bouclier céphalique, présentant à l'extrémité inférieure du siphon, et de chaque côté, deux petites pattes bi-articulées; et, plus bas, une ventouse de chaque côté.

Fig. 26. Siphon, très grossi, du Pandare de l’Aiguillat, comprimé et vu en dessous.

Fig. 27. Tête entière et non comprimée du Pandare de l’Aiguillat, vue de face et rabattue du côté inférieur de la carapace, montrant les pattes préhensiles qui sont à sa base, les nervures qui la consolident et les ventouses qui sont placées de chaque côté.

Fig. 28. Extrémité, très grossie, du siphon de celle-ci soumise au compresseur et montrant deux styles terminés par deux pointes aiguës et dentelées.
MÉMOIRE

SUR

LES CYSTIQUES DES TÉNIAS

Par M. A. VILLOT.

INTRODUCTION.

Les métamorphoses (1) des Ténias comprennent, indépendamment du développement embryonnaire qui s’effectue dans l’œuf, trois états bien différents : une première forme larvaire (Proscolex); une deuxième forme larvaire (Scolex); une forme parfaite et sexuée (Proglottis). Il existe, en outre, des phases intermédiaires, qui viennent s’intercaler entre la première et la seconde, la seconde et la troisième. L’une est représentée par l’état vésiculaire (Cystique) (2); l’autre, par l’état rubanaire (Strobile). L’état vésiculaire marque le passage du Proscolex au Scolex; l’état rubanaire établit la transition du Scolex au Proglottis.

(1) J’ai donné, dans mon Mémoire sur les migrations et les métamorphoses des Ténias des Musaraignes, les raisons qui m’empêchent de voir dans le développement des Cestoïdes un cas de Métagénèse ou de Génération alternante (Ann. des sc. nat., Zool., VIe série, t. VIII, art. n° 5, p. 12-14).

(2) On s’est souvent demandé, et même tout récemment, si l’état cystique représentait bien une des phases nécessaires du développement des Ténias; et on a résolu la question par la négative, en s’appuyant sur ce fait qu’on ne connaît encore qu’une quarantaine de Cystiques pour deux cents espèces de Ténias déjà décrites à l’état adulte. Le petit nombre des Cystiques actuellement connus nous paraît s’expliquer très bien par l’insuffisance des recherches. On n’a encore que très peu cherché chez les Invertébrés; et c’est cependant chez eux que l’on peut espérer de trouver les Cystiques des nombreuses espèces de Ténias hébergées à l’état adulte par les Vertébrés qui se nourrissent d’animaux inférieurs ou de végétaux. L’étude du développement des parasites des Vertébrés ne peut être éclairée que par une connaissance parfaite des parasites des Invertébrés; et l’étude de ces derniers est à peine ébauchée. L’hypothèse d’un développement direct du Proscolex a été contredite par l’observation dans la plupart des cas où elle avait été admise; elle reste à justifier pour les autres.

ANN. SC. NAT., ZOOL., OCTOBRE 1883. XV. 17e. — ART. N° 4.
Il ne faut voir là sans doute qu'une série de formes, les phases d'un seul et même développement, qui se succèdent sans discontinuité; mais ce sont des états différents, qu'il convient de désigner par des noms différents, ne fût-ce que pour la clarté et la précision du langage. En négligeant cette précaution, on s'expose à rapporter au même temps des phénomènes successifs, et l'on rend illusoire toute comparaison entre les espèces.

Le Scolex fait partie intégrante du Cystique comme du Strobile; mais chez le premier il se trouve associé aux restes du Prosolex, chez le second aux ébauches des Proglottis. Les deux phases intermédiaires représentées par le Cystique et le Strobile se distinguent d'ailleurs des phases principales par des caractères importants. Le Prosolex, le Scolex et le Proglottis vivent dans leur hôte à l'état libre. Le Cystique et le Strobile, au contraire, sont des parasites fixes, qui nous offrent l'un et l'autre des phénomènes de bourgeonnement et de prolifération (1); mais l'état vésiculaire est essentiellement caractérisé par le fait de l'invagination et de l'enkystement du Scolex.

Il existe, comme on le voit, entre les divers états asexués d'un Ténia, des différences caractéristiques, qui sont encore aujourd'hui trop souvent méconnues. Leur distinction doit toujours servir de base à la comparaison des divers types. Il importe, en effet, de ne pas mettre en parallèle un Scolex avec un Prosolex ou de ne pas opposer un Scolex à un Prosolex.

L'histoire des Ténias a été et sera encore pendant longtemps

(1) On doit se garder de confondre la prolifération avec le bourgeonnement. Tous les Cystiques bourgeonnent, car le bourgeonnement est la condition nécessaire de leur mode de formation; mais il s'en faut de beaucoup qu'ils soient, comme les Strobiles, tous prolifères. La prolifération est essentiellement caractérisée par le fait de la multiplication de l'individu. La polyzoïcité d'un Cystique ou d'un Strobile ne consiste pas dans la formation d'un Scolex par un Prosolex, d'un Proglottis par un Scolex, mais bien dans la production de plusieurs Scolex par un seul et même Prosolex, de plusieurs Proglottis par un seul et même Scolex.

ARTICLE N° 4.
GYSTIQUES DES TÉNIAS.

arbitrairement divisée, parce qu'on ne peut, dans la plupart des cas, à cause des migrations, constituer la série complète des divers degrés de développement. Nous décrivons d'un côté les Scolex, les Strobiles, les Proglottis, les œufs et les embryons, de l'autre les Proscolex et les Cystiques; et nous leur donnons des noms différents, alors même que nous connaissons leurs rapports de filiation. Cette classification en parties doubles a, dans l'état actuel de la science, sa raison d'être et son utilité pratique. Nous savons aujourd'hui que les Cystiques ne sont pas, ainsi qu'on l'a cru pendant longtemps, des individus adultes, malades ou fourvoyés, mais bien des larves, parfaitement normales et soumises à des migrations nécessaires. Il n'en reste pas moins à décrire ces larves; et comme nous ne connaissons pas encore, pour la plupart d'entre elles, leurs états antérieurs et ultérieurs de développement, nous sommes bien obligés de les décrire et de les classer à part. Nous leur donnons un nom spécifique pour les distinguer les unes des autres et un nom générique pour exprimer leurs affinités, tout en reconnaissant ce que cette nomenclature a de provisoire (1).

Un jour viendra où la classification des Ténias pourra être ramenée à l'unité. Mais il n'y aura alors que les noms spécifiques des Cystiques à supprimer; car on sait déjà que le groupe définitif des espèces en sous-genres doit reposer sur la classification des états vésiculaires. Les Proscolex, les Scolex, les Strobiles et les Proglottis ne fournissent que des caractères d'une valeur secondaire. C'est ce que reconnaissent parfaitement les helminthologistes qui se sont occupés récemment de la distribution des espèces du genre *Taenia*.

Zeder essaya le premier, en 1800, de grouper méthodique-

(1) Cette nécessité de l'étude est aujourd'hui reconnue par tous les naturalistes pour les larves des Trématodes. Les Cercaires actuellement connues portent dans nos catalogues des noms génériques et spécifiques. Or, si l'on juge utile d'agir ainsi à l'égard des larves des Trématodes, je ne vois pas pourquoi on agirait autrement à l'égard des larves des Cestoïdes. Je ne crois pas qu'il y ait avantage, pour la science, à confondre sous le nom de *Cysticercus Glomeris* les trois genres et les quatre espèces de Cystiques que j'ai découverts chez le *Glomeris limbatus*.
ment les diverses espèces de Cystiques connues de son temps ; il crut ne pouvoir mieux faire que de les diviser en monocéphales et polycéphales. Il donna aux premiers le nom générique de Cysticercus et aux seconds celui de Polycephalus.

Rudolphi adopta le genre Cysticercus, tel que Zeder l’avait établi ; mais il lui parut nécessaire de démembrer le genre Polycephalus. Le célèbre auteur de l’Histoire naturelle des Entozoaires créa le genre Caenurus pour les cystiques polycéphales à prolifération exogène et le genre Echinococcus pour les cystiques polycéphales à prolifération endogène.

Ces trois genres (Cysticercus, Caenurus et Echinococcus) ont été admis depuis par tous les helminthologistes, et la plupart d’entre eux, même aujourd’hui, n’en acceptent pas d’autres. Cette distribution n’est cependant pas irréprochable ; et il s’en faut de beaucoup qu’elle réponde aux besoins actuels de la science. Les Cysticerques, les Cœnures et les Échinocoques de Rudolphi ne représentent point des divisions d’égale valeur. Il n’est ni logique ni naturel d’opposer tout le groupe des Cystiques monocéphales à chacune des subdivisions du groupe des Cystiques polycéphales. Rudolphi, en démembrant le groupe des Cystiques polycéphales, a rompu l’équilibre, détruit l’harmonie de la distribution de Zeder ; et il est évident que l’ordre ne peut être rétabli aujourd’hui dans la classification que par le démembrément du groupe des Cystiques monocéphales. Il faut réduire le genre Cysticerque à la valeur des groupes désignés par Rudolphi sous les noms de Cœnures et d’Échinocoques.

C’est en réalité ce qu’on a déjà essayé de faire, mais d’une manière peu satisfaisante, à mon avis.

Diesing (1) a séparé les Cysticerques armés des Cysticerques inermes ; il réserve le nom de Cysticercus aux premiers et propose pour les seconds celui de Piestocystis. L’absence complète de la trompe, du bulbe et des crochets constitue pour Diesing le caractère essentiel et vraiment distinctif de ce nouveau

(1) Systema Helminthum, t. 1, p. 494.
genre. La soi-disant multiplication, qui figure aussi dans sa caractéristique, n’avait aux yeux de ce savant helminthologiste qu’une valeur très secondaire. Nous en avons la preuve dans ce fait, qu’il rapporte au genre Cysticercus bon nombre de Cystiques réputés prolifères; et s’il agit ainsi, c’est que ces Cystiques réputés prolifères sont armés. Or peut-on, comme l’a fait Diesing, attribuer à ce caractère une pareille importance? J’en doute. L’état armé et l’état inerme ne sont pas aussi nettement délimités qu’il le semble au premier abord; et l’on sait déjà qu’ils passent de l’un à l’autre par des transitions insensibles, ainsi que nous le montre le cas bien connu du Taenia saginata. Il ne paraît pas d’ailleurs que ces différences aient une bien grande influence sur le reste de l’organisation, puisque nous les voyons indifféremment associées à des caractères beaucoup plus importants, tels que ceux que fournissent la musculature et les organes génitaux. Le Cysticercus bovis (Cystique du Taenia saginata) doit passer pour un inerme, car il n’a point de crochets et ne possède qu’un bulbe rudimentaire; il se rapproche cependant par l’ensemble de son organisation interne des véritables Cysticerques armés. Si l’on a regard à la caractéristique de Diesing, il faut le placer parmi les Piestocystis et le séparer génériquement des formes avec lesquelles il a le plus d’affinités. On voit, par cela même, combien est artificiel le mode de distribution proposé par l’auteur du Systema Helminthum. L’état inerme, pas plus que l’état armé, ne peut caractériser une coupe générique parmi les Cystiques; et il est bien évident que le groupe des Piestocystis doit disparaître de la nomenclature (1).

(1) Ce qui ne veut pas dire que nous mettions en doute, à l’exemple d’un savant vétérinaire, l’existence des Cysticerques inermes et la valeur des caractères fournis par l’armature céphalique pour les distinctions spécifiques. Les Cystiques inermes sont les larves des Ténias inermes, comme les Cystiques armés sont les larves des Ténias armés; et il n’existe, contrairement aux hypothèses de M. Mégnin, aucun rapport de filiation entre les Ténias inermes et les Ténias armés. Qu’un changement d’hôte soit nécessaire ou non pour transformer un Cystique en Ténia adulte, un Cystique armé ne peut produire dans le milieu où il se développe qu’un Ténia armé. Les Ténias inermes
Küchenmeister (1) distribue les Cystiques des Ténias en trois groupes primordiaux, principalement caractérisés par le mode de formation du Scolex. Le savant médecin de Zittau s'exprime, à ce sujet, de la manière suivante :

« Der Scolex bildet sich in der Embryonalblase entweder direct (Platycercen) oder indirect aus einer Brutkapsel hervor, und zwar aus einer primären ein- oder mehr fachen (Cysticer cen in engern Sinne und Cœnuren, Echinococcen in Einzelfällen) oder in aus der primären hervorwachsenden, secundären Brutkapseln (Cystoplatycercen-Echinococcen) ».

Cette division ne repose, ainsi que nous le montrerons plus loin, que sur une conception inexacte de la structure et du développement des Cystiques des Ténias. Ce que Küchenmeister désigne sous le nom de Brutkapsel existe chez les Platycercen aussi bien que chez les Cysticercen et les Cystoplatycercen. Les conséquences suffiraient d'ailleurs pour faire rejeter le principe. Une classification qui place les diverses parties d'un individu ou les divers individus d'une seule et même espèce d'Échinocoque dans des groupes primordiaux différents, qui éloigne le Cysticercus fasciolaris de tous les autres Cysticerques pour le rapprocher des Échinocoques, ne saurait être adoptée.

Leuckart (2) n'admet que deux grands groupes parmi les vers vésiculaires. Le premier groupe, celui des Cystiques proprement dits (echten Cystici, echten Blasenwürmer), comprend les Cysticerques proprement dits, les Cœnures et les Échinocoques. Le second groupe, celui des Cysticercoïdes (Cysticercoiden), réunit tous les Cystiques d'une organisation inférieure à celle des Cysticerques proprement dits, des Cœ-
Cystiques des ténias.

Cystiques des ténias. Cette distinction est fondée sur le développement ou la réduction de la vésicule caudale, sur la présence ou l'absence du liquide intra-vésiculaire. Or, ce sont là des caractères qui varient trop, qui comportent trop de nuances, de l'aveu même de Leuckart, pour donner une coupe bien nette. Les Cysticerques proprement dits, les Côenures et les Échinocoques représentent sans doute des divisions parfaitement caractérisées et très naturelles; mais le groupe des Cysticercoïdes, qui ne repose que sur des caractères purement négatifs, se trouve par le fait des plus hétérogènes. Il comprend, ainsi que nous le montrerons dans le présent travail, toute une série de types qui diffèrent entre eux par des caractères de même ordre et de même valeur que ceux qui séparent les Cysticerques proprement dits des Côenures, les Côenures des Échinocoques.

Moniez (1), à qui nous devons le mémoire le plus récent qui ait été publié sur les vers vésiculaires, ne s'est pas occupé de la classification des diverses formes qu'il cite ou décrit. Le savant helminthologiste de Lille, subordonnant la valeur des différences à celle des ressemblances, s'est proposé principalement de démontrer l'unité de type de tous les Cystiques.

Les découvertes de chaque jour, en augmentant le nombre des espèces, nécessitent cependant la création de nouveaux genres et rendent de plus en plus urgente la révision de ceux qui ont été admis jusqu'ici. Mais il est bien évident que ce travail de critique en suppose un autre. Il importe d'abord de fixer, en se plaçant à un point de vue suffisamment général, la nomenclature, les homologies et les analogies des diverses parties constitutantes de ces intéressants organismes. La plus regrettable confusion règne encore à cet égard dans l'esprit des helminthologistes; et c'est là ce qui rend si pénible la lecture des publications relatives aux Cystiques. Il est difficile, quelquefois même impossible, lorsque les figures font défaut,

(1) Essai monographique sur les Cysticerques (Trav. de l'Inst. zool. de Lille et de la stat. marit. de Wimereux, t. III, fasc. 1; 1880.
de comprendre les descriptions données par chaque auteur et à plus forte raison de comparer les descriptions des divers auteurs.

Il s'en faut, malheureusement, que nous connaissions l'organisation de toutes les espèces qui existent déjà dans nos catalogues. La plupart sont si insuffisamment décrites, qu'on a peine à les déterminer. Quant à leurs affinités, elles sont par cela même encore fort obscures et très discutées. On ne saurait donc, dans l'état actuel de la science, reconnaître tous les genres auxquels appartiennent les espèces déjà décrites, ni rapporter sûrement aux genres qu'il est possible d'établir toutes les espèces qui devraient déjà en faire partie. On peut du moins commencer ce travail de revision et introduire dès à présent d'importantes améliorations dans la distribution méthodique des Cystiques des Ténias.

Il est un fait qui semble avoir passé inaperçu jusqu'ici et qui domine cependant toute la morphologie et tout le développement des Cystiques des Ténias. Je veux parler du mode de formation de la vésicule caudale. Celle-ci se forme, en effet, de deux manières bien différentes : 1° par simple modification du Proscolex, c'est-à-dire sans production de partie nouvelle ; 2° par bourgeonnement du Proscolex, c'est-à-dire par adjonction d'une partie nouvelle. On comprend facilement de quelle importance est cette distinction pour le groupement des espèces et la détermination de leurs homologies. Le nombre des parties n'étant pas le même chez toutes les espèces, il faut avoir soin de n'opposer les unes aux autres que des espèces offrant le même nombre de parties ou de tenir compte, si l'on veut procéder à une comparaison générale, de la partie qui fait défaut aux unes, qui se trouve en plus chez les autres. Si l'on néglige cette précaution, on s'expose à commettre de nombreuses erreurs dans la détermination des homologies et à se méprendre sur les véritables affinités. Or c'est précisément ce qui est arrivé. On a voulu ramener tous les Cystiques des Ténias à l'unité de composition ; et l'on n'est en réalité parvenu qu'à embrouiller la nomenclature de leurs parties constitutantes,
CYSTIQUES DES TÉNIAS.

à tel point qu’il est aujourd’hui presque impossible de s’y reconnaître.

La première chose à faire, si l’on veut débrouiller ce chaos, c’est de répartir tous les genres et toutes les espèces en deux grands groupes, d’après le mode de formation de la vésicule caudale. Le premier groupe comprendra tous les Cystiques dont la vésicule caudale procède du Proscolex par simple accroissement et modification de structure, sans qu’il y ait à proprement parler production d’une partie nouvelle. Le second groupe réunira tous les Cystiques dont la vésicule caudale se forme par bourgeonnement du Proscolex, c’est-à-dire par adjonction d’une partie nouvelle. Il convient ensuite de diviser le second groupe en deux sections d’après le mode de bourgeonnement de la vésicule caudale, qui peut être endogène ou exogène. Telle est, dans toute sa simplicité, la classification que nous allons exposer et développer (1).

PREMIER GROUPE.

Cystiques dont la vésicule caudale procède du Proscolex par simple accroissement et modification de structure, sans qu’il y ait, à proprement parler, production d’une partie nouvelle.

Ce groupe correspond à peu près aux « Cystiques proprement dits » de Leuckart, et doit être considéré comme représentant, parmi les Cystiques des Ténias, un degré supérieur d’organisation. Indépendamment de leur hydropisie plus ou moins marquée et du développement de leur vésicule caudale, sur lesquels on s’était fondé tout d’abord pour les distinguer, et des caractères que nous leur donnons, les Cystiques de ce groupe ont ordinairement une enveloppe adventice fournie par leur hôte. Celui-ci est toujours un animal appartenant à l’embranchement des Vertébrés (Mammifère, Oiseau, Reptile ou Poisson).

(1) Voy. aussi un article ayant pour titre : Classification des Cystiques des Ténias, fondée sur les divers modes de formation de la vésicule caudale, qui a paru dans la Revue des sciences naturelles, 3e série, t. II, n° 1 (15 septembre 1882).
A. VILLOT.

Genre CYSTICERQUE (Cysticercus).

Le nom de Cysticerque, proposé par Zeder pour désigner l'ensemble des Cystiques monocéphales, n'a plus maintenant de sens précis. Leuckart le donne indifféremment à ses Cysticerques proprement dits et à ses Cysticercoids. Moniez l'applique à tous les Cystiques des Ténias et même à tous les états asexués des Cestoïdes. Ce défaut de précision dans la nomenclature ne nous paraît pas sans inconvénients. Aussi pensons-nous qu'on doit réserver le nom de Cysticercus aux Cysticerques proprement dits de Leuckart (echten Finnen), dont nous formons notre premier genre.

Nous distinguons dans un Cysticerque quatre parties bien différentes : la tête (Kopf), le corps (Wurmleib), la vésicule caudale (Schwanzblase) et le kyste (Cyste) (1). Ces diverses parties n'ont pas toutes la même importance et la même signification. Le kyste (2) ne fait pas, à proprement parler, partie du Cysticerque. Il ne représente autre chose qu'une enveloppe adventice, fournie par l'hôte, et qui se forme aux dépens des tissus de ce dernier par voie de dégénérescence. La tête, le corps et la vésicule caudale sont, au contraire, des parties intégrantes du Cysticerque.

La vésicule caudale est la partie qui se forme la première. Elle procède du Proscolex (Embryon ou Hexacanthe des auteurs) par simple accroissement et modification de structure. Elle n'est constituée tout d'abord que par une mince cuticule, servant d'enveloppe à une masse compacte de cellules

(1) La nomenclature des parties constitutantes des Cysticerques est encore aujourd'hui livrée à l'arbitraire. Les auteurs donnent le nom de « tête » ou de « scolex » tantôt à la véritable tête, tantôt à l'ensemble des parties représentées par la tête et le corps. De même, ils donnent le nom de « cou » tantôt au véritable cou, qui n'est autre chose que la partie postérieure de la tête, tantôt au corps. De là une grande confusion dans les choses et les idées, et des discussions qui ne portent le plus souvent que sur des malentendus.

(2) La véritable acception de ce mot, que beaucoup d'helminthologistes emploient très improprement pour désigner la vésicule caudale, a été parfaitement déterminée par le Dr Davaine (Traité des Entozoaires, p. 369, en note, 2e édition).

ARTICLE N° 4.
Cystiques des ténias.

11

embryonnaires; et les crochets du Proscolex, qu’elle porte encore pendant quelque temps, indiquent assez son origine (1). Mais les cellules embryonnaires ne tardent pas à se différencier. Les unes perdent leur noyau et se transforment en vésicules hyalines qui résistent aux réactifs colorants. Les autres conservent leur noyau, leur protoplasme normal et toute leur activité cellulaire. Celles-ci ne pouvant se développer que dans les interstices des vésicules dont nous venons de parler, prennent une forme étoilée et s’anastomosent bientôt par leurs prolongements. Le parenchyme de la future vésicule caudale consiste dès lors en un réseau cellulaire, dans les mailles duquel se trouvent emprisonnées d’autres cellules, les vésicules transparentes.

Je crois devoir insister sur ce premier processus de différenciation histologique, parce qu’il a été interprété dans ces derniers temps d’une manière bien différente. « Nous pensons, dit Moniez (2), que les cellules de l’embryon hexacanthe doivent s’imbiber des liquides albumineux de l’organisme et se transformer en ce réticulum granuleux et encore vivant, très caractéristique, qui doit perdre bientôt ses granulations pour se transformer en un réseau de nature vraiment conjonctive. Tout le corps de l’embryon subit cette transformation, à part le point où va se développer le futur Ténia. Mais le protoplasme tout entier ne doit pas se transformer en éléments conjonctifs, le protoplasme central des filaments doit transsuder entre les mailles, plus ou moins modifié, se combinant d’une façon ou d’une autre avec l’élément albumineux endosmotique modifié, probablement aussi par suite de sa séquestration. Il se forme ainsi une substance interréticulaire non point solide tout d’abord, mais qui devient coagulable, au moins par les agents chimiques, et qui se maintient sur les coupes. »

(2) Essai monographique sur les Cysticerques, p. 31.
Ce mode de formation, tel que le suppose le savant auteur de l'Essai monographique sur les Cysticerques, semble inspiré par une théorie surannée, celle du blastème, aujourd'hui complètement abandonnée par les histologistes. En effet, les observations histogéniques les plus précises tendent à démontrer qu'il n'existe nulle part de genèse intercellulaire, que tous les éléments anatomiques, amorphes ou figurés, se forment in situ, aux dépens de cellules préexistantes. Les corps transparents qui remplissent les espaces interréticulaires de la vésicule caudale des Cysticerques ne font pas, selon nous, exception à la règle. Ils résultent bien, comme nous l'avons dit plus haut, d'une transformation sur place d'une partie des cellules embryonnaires du Proscolex ; ils ne représentent point, comme le croit le Dr Moniez, une substance amorphe produite par sécrétion, mais bien de véritables cellules. Et il en est ainsi non seulement pour le parenchyme des larves des Cestoïdes, mais encore pour celui des Cestoïdes adultes, des Trématodes, des Nématoïdes et des Gordiens. Le parenchyme de tous ces animaux est essentiellement constitué par de grandes cellules embryonnaires, ovales ou arrondies, transparentes et plus ou moins modifiées. Le réticulum décrit par les auteurs remplit les interstices de ce tissu cellulaire ; et les soi-disant vides interréticulaires ne représentent autre chose que la coupe des cellules qui remplissent en réalité les mailles du réseau. Ces cellules ne peuvent, en effet, être représentées sur une coupe que par leur membrane d'enveloppe ; leur noyau a le plus souvent déjà disparu ; et leur contenu est facilement pris pour un vide, grâce à sa réfringence. Ce dernier peut aussi s'échapper dans les diverses manipulations, et former ainsi un vide réel, mais artificiel. Ce sont ces apparaences qui ont induit en erreur beaucoup d'helminthologistes.

Le Proscolex subit d'ailleurs d'autres différenciations histologiques pour constituer la vésicule caudale d'un Cysticerque. La partie centrale de son parenchyme tombe en dégénérescence et se liquéfie. Des vaisseaux, des fibres contractiles, transversales et longitudinales, se forment aux dépens du ré-

ARTICLE N° 4.
seau protoplasmique de la zone périphérique. Celle-ci finit elle-même par entrer dans la voie des régressions. Les vaisseaux s’oblitérèrent et les fibres contractiles passent à l’état de fibres élastiques. La vésicule caudale, après avoir formé le corps et la tête du Cysticerque de la manière qui sera indiquée ci-dessous, n’a plus en effet d’autre rôle à jouer que celui d’un organe de protection. Elle a la signification d’une simple enveloppe, qui disparaît lorsque le Scolex, parvenu dans un milieu favorable à son évolution, est mis en liberté.

Une observation intéressante, faite par Moniez (1), nous montre que, chez les Cysticerques proprement dits, la totalité du Proscolex n’est pas toujours nécessaire pour remplir ce rôle de protection. Lorsque les larves du Cysticercus pisiformis ont atteint la longueur de 1 centimètre sur moins de 1 millimètre de large, au moment où les premières ébauches du corps et de la tête commencent à paraître, la vésicule caudale se divise en deux parties par un processus de constriction qui affecte sa partie moyenne. Les deux parties sont d’abord réunies par un étroit pédicule; mais ce dernier venant à se rompre, elles se trouvent complètement séparées et indépendantes. La partie antérieure constitue le Cysticerque définitif. Quant à la partie postérieure, elle se désorganise et disparaît.

Le corps et la tête du Cysticerque sont des formations secondaires, qui procèdent de la vésicule caudale par voie de bourgeonnement. Alors que les tissus de cette vésicule jouissent encore de toute leur vitalité, on voit les cellules embryonnaires situées à son pôle antérieur devenir le siège d’une abondante prolifération. Il se forme ainsi, sous la cuticule, une sorte de mamelon; mais ce mamelon, au lieu de faire saillie à l’extérieur en soulevant la cuticule, s’enfonce de plus en plus dans la cavité de la vésicule caudale en déprimant la portion de la cuticule qui lui est attenante. L’invagination du mamelon dans la vésicule caudale peut être comparée au retournement

(1) *Essai monographique sur les Cysticerques*, p. 26-30; pl. 1, fig. 4.

Ann. sc. nat., zool., octobre 1883. X V. 18. — Art. n° 4
d'un doigt de gant que l'on refoulerait sur lui-même par son extrémité. Ce bourgeon creux, invaginé dans la vésicule caudale, est ordinairement désigné sous le nom de *rudiment céphalique* (Kopfanlage, Kopfzapfen). C'est une dénomination qui ne lui convient qu'à moitié ; car il représente à la fois l'ébauche de la tête et celle du corps du Cysticerque. Tête et corps se forment et se développent en même temps, aux dépens d'un seul et même bourgeon, contrairement à ce qui a été dit par plusieurs auteurs. Le mérite d'avoir nettement établi ce fait appartient à Leuckart (1).

L'évolution du bourgeon somato-céphalique débute par une délamination. Deux feuillets, séparés par une lacune intermédiaire, se forment aux dépens de la paroi primitive du bourgeon. L'un, supérieur et externe, se rattaché à la partie supérieure et externe de la zone périphérique du parenchyme de la vésicule caudale ; l'autre, inférieur et interne, correspond au prolongement de la partie inférieure et interne de la zone périphérique du parenchyme de cette même vésicule.

Le nom de *receptaculum capitis* a été donné au premier de ces feuillets par Moniez (2), au second par Leuckart (3). On doit, croyons-nous, éviter l'emploi de cette dénomination pour deux raisons : d'abord, parce qu'elle prête à la confusion, ayant été appliquée à des parties différentes par les deux auteurs que nous venons de citer ; ensuite, parce qu'elle ne convient réellement ni à l'une ni à l'autre de ces parties. Le *receptaculum capitis*, au sens de Leuckart, n'enveloppe pas que la tête, tandis qu'il peut, au sens de Moniez, ne rien envelopper du tout, ainsi qu'on le verra plus loin. Nous donnerons simplement à ces deux parties différentes du bourgeon somato-céphalique les noms de *feuillet externe* et de *feuillet interne*, et la lacune intermédiaire sera pour nous la *cavité interpariétale*. Les parois du bourgeon circonscrivent, comme on le

(1) *Die Blasenbandwürmer und ihre Entwicklung*, p. 135.

ARTICLE N° 4.
voit, trois cavités : la cavité d’invagination, la cavité interpariétale et la cavité de la vésicule caudale.

Cette phase du développement a d’ailleurs été, dans ces derniers temps, très inexactement décrite. Leuckart, dans la deuxième édition de son grand ouvrage, s’exprime de la manière suivante : « Wärend ich nämlich früher der Meinung war, dass dieses Receptaculum durch Differenzierung aus der Zellenmasse des Kopfzapfens hervorgangenen sei, genetisch also einen Theil des Kopfzapfens bilde, habe ich nachträglich die Überzeugung gewonnen, dass es der von Muskelfasern durchsetzten Innenschicht des Blasenkörpers zugehört, welche durch die Erhebung des Kopfzapfens, dessen Zellenmasse eine mehr peripherische Lage hat, sackartig vorgetrieben wird (p. 439). » Leuckart confond ici le feuillet interne du bourgeois somato-céphalique (Kopfzapfens) avec la partie interne du parenchyme de la vésicule caudale, dans laquelle le bourgeois est pour ainsi dire enchassé. Cette confusion a entraîné l’illustre helminthologiste dans une autre erreur. Leuckart (1) considère, en effet, comme une sorte de prolongement de son receptaculum capitis (Auswuches des Receptaculaums) l’appendice décrit sous le nom de « queue » chez le Cysticercus tenuicollis; alors que ce soi-disant appendice caudal est en réalité complètement indépendant du receptaculum capitis de Leuckart et appartient bien, ainsi que le dit Moniez (2), à la partie interne du parenchyme de la vésicule caudale. Mais cette vérité, reconnue par Moniez, est elle-même la cause de l’erreur que commet l’auteur de l’Essai monographique sur les Cysticerques, lorsqu’il refuse toute autonomie au receptaculum capitis de Leuckart. « Ce qui, dit Moniez, représente le receptaculum capitis, au sens de Leuckart, n’est autre chose que la portion des tissus de l’embryon hexacanthe situés au voisinage de l’invagination céphalique refoulés et distendus par son accroissement (p. 50). » Le feuillet interne du bourgeois somato-céphalique (receptaculum capitis de Leuckart) jouit

(1) Die Parasiten des Menschen, Bd. 1, p. 730 (2e édit).
(2) Essai monographique sur les Cysticerques, p. 51.
d'une parfaite autonomie et n'a, contrairement aux assertions de Leuckart et de Moniez, aucun rapport génétique avec la partie interne du parenchyme de la vésicule caudale. Ses rapports avec cette partie de la vésicule caudale sont de simples rapports de contact, et ces rapports tiennent eux-mêmes uniquement à ce fait que, chez les Cysticerques, la résorption de la partie interne du parenchyme de la vésicule caudale n'est jamais complète. Ni Leuckart, ni Moniez ne parlent dans leur texte de la cavité interpariétale ; mais les figures qu'ils donnent témoignent assez de l'existence réelle de cette cavité. L'existence de la cavité interpariétale devient évidente lorsque, par suite du développement de la tête et de la paroi externe du corps, le feuillet externe du bourgeon somato-céphalique est obligé de se plisser et de se recourber. Le feuillet interne ne participe nullement à ces modifications; et cela seul, à notre avis, suffirait pour démontrer l'indépendance absolue des deux feuilles et l'existence de la lacune qui les sépare.

Les deux feuillets du bourgeon somato-céphalique ne sont d'abord constitués que par des cellules embryonnaires en parfaite continuité de tissu avec celles de la zone périphérique du parenchyme de la vésicule caudale; mais il survient bientôt des différenciations histologiques et organologiques qui permettent d'établir les limites précises des diverses parties constitutantes du Cysticerque. Le feuillet interne, qui doit former la paroi interne du corps, passe à l'état de tissu conjonctif ou élastique. Un liquide, tenant en suspension de nombreux corpuscules calcaires, s'accumule dans la cavité interpariétale. Quant au feuillet externe, qui doit former la paroi externe du corps et toute la tête, il constitue les fibres musculaires, l'appareil vasculaire, le système nerveux, les ventouses et le bulbe du Cysticerque. Nous n'entrerons pas ici dans le détail de ces différenciations, cela nous entraînerait trop loin; mais nous croyons devoir décrire la structure du bulbe et des ventouses, parce que ces organes fournissent d'excellents caractères pour la distinction des espèces.

ARTICLE N° 4.
Le bulbe est situé au centre et à l'extrémité de la trompe, et se prolonge plus ou moins dans la tête proprement dite. On y distingue deux parties bien différentes par leur nature, leur rôle physiologique et la manière dont elles se comportent avec les matières colorantes. La partie interne, celle qui se colore en rose par le carmin, est de nature musculaire; c'est l'appareil musculaire du bulbe qui est entièrement constitué par des fibres longitudinales et transversales disposées sur plusieurs plans et croisées en tous sens. La partie externe, celle qui reste toujours incolore, est de nature conjonctive et constituée par des fibres élastiques entrecroisées. La couche externe est formée de fibres transversales, l'interne de fibres longitudinales. Cette partie périphérique n'est autre chose qu'une enveloppe protectrice, et c'est sur sa paroi interne que les fibres de l'appareil musculaire du bulbe viennent s'insérer.

On doit rattacher au bulbe les crochets chitineux qui constituent l'armature de la trompe. Ces crochets sont disposés en couronne sur un ou plusieurs rangs. Chaque crochet est formé de plusieurs parties auxquelles on a donné des noms pour faciliter leur description. La partie qui est engagée dans les tissus porte le nom de manche; la partie libre constitue la lame, et on réserve les noms de dent, d'hypomochlion ou de talon pour une petite tubérosité située à l'extrémité postérieure du manche, c'est-à-dire au point d'insertion de la lame. Les crochets se trouvent engagés par leur manche entre l'enveloppe du bulbe et l'enveloppe de la trompe. Le manche adhère, en effet, au bulbe par sa face interne et aux téguments de la trompe par sa face externe. Quant à la lame, elle traverse l'épaisseur des téguments de la trompe et fait saillie au dehors.

Les crochets et le bulbe lui-même ne sont pas des parties essentielles de la tête du Cysticerque; ils peuvent être plus ou moins développés, plus ou moins réduits, ou même manquer entièrement. Le bulbe et les crochets nous offrent, chez les Cysticerques, de nombreux caractères différentiels. Les différences portent le plus souvent sur le nombre, la disposition, la forme et les dimensions des crochets.
A. VILLOT.

Les ventouses ou bothridies ne manquent jamais et sont toujours, sauf les cas tératologiques, au nombre de quatre. Elles sont constituées par une charpente de fibres musculaires et enveloppées d'une couche de tissu élastique, sur la paroi interne de laquelle les fibres musculaires viennent s'insérer. Les éléments musculaires forment deux couches : l'externe est composée de fibres circulaires, l'interne de fibres rayonnantes.

Le bulbe et les ventouses sont des organes de fixation (1), analogues par leurs fonctions et homologues par leur structure. Leur homologie est surtout frappante lorsque la trompe est invaginée dans le bulbe. Aussi a-t-on quelquefois donné au bulbe le nom de « cinquième ventouse » ou de « ventouse frontale (2). »

Le développement de la tête et du corps nécessite certaines dispositions qu'il importe de préciser.

L'ébauche de la tête, située au fond de la cavité d'invagination, ne peut se développer que de deux manières : en faisant saillie dans la cavité primitive du bourgion somato-céphalique, ou bien en s'invaginant sur elle-même. Dans le premier cas, les crochets et les ventouses se forment sur un mamelon, et l'on assiste à un processus de dévagination, qui affecte d'abord la partie antérieure de la tête, puis toute la tête, et qui peut aller jusqu'à la dévagination complète de la tête et du corps, ainsi qu'on l'observe chez le Cysticercus fasciolaris. Dans le second cas, les crochets et les ventouses se développent sur la paroi d'une cavité formée par l'invagination de la tête sur elle-même. Cette cavité, formée par l'invagination de la tête

(1) Certains auteurs donnent à l'ensemble de la tête du Cysticerque la signification d'un organe de fixation. C'est absolument comme si l'on donnait le nom d'organe de manducation à la tête d'un Mammifère, parce qu'on y observe une bouche et des dents. Il me paraît encore plus difficile d'admettre que la tête du Cystique représente la queue du Proscolex ; et il n'y a, selon moi, aucune comparaison à établir entre un Strobile et un ver ancelé.

(2) Ce nom de « ventouse frontale » ne convient nullement à l'invagination de la tête en elle-même, telle qu'on l'observe ordinairement chez la larve du Ténia saginata (Cysticercus bovis).

ARTICLE N° 4.
sur elle-même, n’est autre chose que le prolongement de la cavité primitive du bourgeon somato-céphalique; et le retournement en doigt de gant de ce bourgeon se trouve par cela même complet.

Ces diverses positions de la tête du Cysticerque se trouvent décrites dans les auteurs; mais elles ont été jusqu’ici interprétées d’une manière trop absolue. Moniez (1), s’appuyant sur des états de dévagination complète de la tête (pl. I, fig. 1 et 8), affirme que l’invagination en doigt de gant n’affecte jamais la tête. Or c’est là une assertion qui ne peut se soutenir. Il est certain qu’au début l’ébauche de la tête participe au retournement complet du bourgeon somato-céphalique. La dévagination, lorsqu’elle a lieu, ne s’établit que par suite du développement et ne s’effectue que progressivement. Plusieurs des figures données par Moniez le prouvent péremptoirement. Dans les figures 2, 5 et 16 de la planche I, 13 de la planche III, la dévagination n’affecte en réalité que le rostellum; les ventouses et toute la partie postérieure de la tête sont invaginaées. Dans les figures 11 de la planche I, 3 et 5 de la planche II, l’invagination en doigt de gant affecte toute la tête; et les crochets sont renversés. La figure 11 de la planche I est particulièrement intéressante; car elle se rapporte à un état jeune du Cysticercus fasciolaris. Leuckart (2), s’appuyant sur des cas de ce dernier genre, soutient, au contraire, que les crochets et les ventouses se forment toujours sur la paroi d’une cavité d’invagination, non seulement chez les Cystiques proprement dits, mais encore chez les Cysticercoïdes. Mes observations sur le développement des Staphylocystes, faites en 1877, confirmées ensuite par celle de Moniez sur le Cysticercus pisiformis, montrent ce qu’il faut penser de cette assertion de Leuckart. Il est hors de doute que, chez les Staphylocystes, les crochets et les ventouses se forment sur un mamelon; et il n’y a rien d’étonnant à ce que ce mode de développement s’observe aussi chez

(1) Essai monographique sur les Cysticerques, p. 36.
certains Cysticerques. La vérité est que la tête des Cystiques peut se développer de deux manières bien différentes, et que sa disposition n’offre rien de constant dans le groupe des Cysticerques.

Une autre question, sur laquelle Leuckart et Moniez ne sont pas d’accord, est celle de savoir si la tête du Cysticerque représente ou non un bourgeon creux. La solution de cette question est pourtant bien simple. La partie du bourgeon somato-céphalique qui représente la tête du Cysticerque est toujours pleine, puisqu’elle n’est autre chose que le prolongement du feuillet externe. La partie du bourgeon somato-céphalique qui représente le corps est, au contraire, toujours creuse, puisque les deux feuillets sont séparés par la cavité interpariétale. Mais si nous avons égard au retournement en doigt de gant du bourgeon somato-céphalique, nous dirons que la tête du Cysticerque est pleine ou creuse, selon qu’elle se développe à l’état de dévagination ou d’invagination.

Des modifications de même ordre et dues aux mêmes causes accompagnent aussi le développement de la paroi externe du corps du Cysticerque. Celle-ci se plisse, se recourbe et rejette la tête sur le côté, en lui faisant quelquefois décrire un ou plusieurs tours de spire. Les plis circulaires, ainsi formés, n’ont d’ailleurs rien de régulier. Ils constituent, sur les coupes longitudinales, des dentelures, plus ou moins élégantes, qui ont été décrites par Moniez (1) sous le nom de papilles.

Ce simulacre d’anneaux a fait croire, jusque dans ces derniers temps, que le corps du Cysticerque passait directement aux états ultérieurs du développement, et qu’il constituait, une fois dévaginé, la chaîne des Proglottis. Cette hypothèse soulevait cependant une petite difficulté : la paroi externe en se dévaginant doit entrainer avec elle la paroi interne, et celle-ci, refoulée en avant, constitue nécessairement au centre du corps du Cysticerque une nouvelle cavité, qui n’est autre chose

(1) Essai monographique sur les Cysticerques, p. 39-41.
ARTICLE N° 4.
que le prolongement de la cavité de la vésicule caudale. En effet, le corps du Cysticerque, à l'état de dévagination, ne représente pas une colonne pleine, mais bien un double cylindre. Comment passer de cette structure à celle du Strobile? Leuckart avait supposé que la cavité formée par la dévagination de la paroi interne (*receptaculum capitis* du naturaliste allemand) était ultérieurement comblée par le développement de nouveaux tissus, venant se souder à ceux du tube somatique. Mais Moniez a parfaitement démontré, à l'aide de l'observation et de l'expérience, que les choses se passent tout autrement dans la réalité. Le fait est que le corps du Cysticerque, après sa dévagination, ne présente aucune solidification de sa cavité interne par adjonction de tissus nouveaux, et qu'il ne prend aucune part à la formation de la chaîne des Proglottis. Cette dernière se forme aux dépens du cou, c'est-à-dire de la partie postérieure de la tête du Cysticerque. Le corps n'a, comme la vésicule caudale, d'autre signification que celle d'une partie provisoire ; sa chute suit de près celle de la vésicule caudale. Les deux enveloppes se détruisent, disparaissent, lorsque le Ténia passe de l'état de Cystique à celui de Scolex. C'est un point qui est aujourd'hui complètement hors de discussion.

On admet généralement, et cela depuis longtemps, que les Cysticerques proprement dits peuvent proliférer. Rudolphi, Goeze, Bremsra, Bendz, von Siebold et bien d'autres helminthologistes ont en effet décrit ou figuré de véritables Cysticerques à vésicule caudale pourvue de plusieurs diverticulums ; et ils y ont vu un indice de prolifération. Les espèces citées sont les suivantes : *Cysticercus cellulosae* (variétés désignées sous les noms de *C. racemosus*, *C. dicystus*, etc.), *Cysticercus tenuicollis*, *Cysticercus pisiformis*, *Cysticercus longicollis*, *Cysticercus fasciolaris*, *Cysticercus talpae*, *Piestocystis crispa*. L'existence de diverticulums sur la vésicule caudale de ces espèces n'est d'ailleurs rien moins que constante, et il s'en faut de beaucoup que l'on ait toujours constaté dans chaque diverticulum la présence d'un corps et d'une tête de Cysticerque. Il se
peut, ainsi que Leuckart (1) l’a très justement fait remarquer, qu’on ait souvent pris pour de véritables bourgeons de simples déformations, dues à des causes purement mécaniques.

Prolifères ou non, les Cysticercues n’en sont pas moins toujours des Cystiques monosomatiques et monocéphales ; car la prolifération, chez eux, ne porte jamais que sur la vésicule caudale. Chacune des vésicules caudales faisant partie d’une colonie de Cysticercues ne produit qu’un corps et qu’une tête. Mais ce fait, qui suffit à la rigueur pour distinguer les Cysticercues proprement dits des Coénores et des Échinocoques, ne constitue pas toute leur caractéristique. Il existe, en effet, parmi les Cystiques des Ténias, de nombreuses formes monosomatiques et monocéphales, qui n’appartiennent nullement au genre Cysticercus, naturellement et rationnellement circonscrit. Les Cysticercues proprement dits sont essentiellement caractérisés par le mode de formation de leur vésicule caudale et par des particularités de structure que nous ferons ressortir en discutant l’organisation et le mode de développement des autres types.

Notre genre Cysticerque doit comprendre les espèces inscrites par Diesing sous les noms de Cysticercus et de Piestocystis, ainsi que beaucoup d’autres qui ont été découvertes depuis la publication du Systema helminthum. Nous plaçons aussi parmi les vrais Cysticercues les deux Cystiques parasites de la Tanche, décrits par Nordmann et Aubert sous le nom générique de Gryporrhynchus, et dont les métamorphoses ont été reconnues par Krabbe. L’un est la larve du Taenia unilateralis, parasite du Héron cendré ; l’autre, la larve du Taenia macropeos, parasite du Bihoreau.

Mais la plupart de ces espèces sont encore aujourd’hui très imperfectement connues. Nous citerons seulement, à titre d’exemples :

- Cysticercus cellulosae, larve du Taenia solium ;
- Cysticercus bovis, larve du Taenia saginata (mediocanellata) ;

(1) Die Parasiten des Menschen, Bd. I. p. 451-452 (2e édition).
ARTICLE N° 4.
Cystiques des ténias.

Cysticercus tarandi, larve du Tœnia Krabbei;
Cysticercus tenuicollis, larve du Tœnia marginata;
Cysticercus pisiformis, larve du Tœnia serrata;
Cysticercus fasciolaris, larve du Tœnia crassicolis;
Cysticercus talpœ, larve du Tœnia tenuicollis;
Cysticercus longicollis, larve du Tœnia crassiceps;
Cysticercus dithyridium, larve du Tœnia perlata.

Genre Cœnure (Cœnurus).

Le groupe des Cœnures, tel que nous l'admettons, correspond exactement au genre Cœnurus, proposé par Rudolphi.

Les Cœnures sont, pour la structure comme pour le mode de développement, des Cystiques très voisins des Cysticerques. On retrouve chez eux les mêmes parties, le même degré d'organisation, la même disposition de la tête et du corps que chez les Cysticerques. Mais ils diffèrent de ces derniers par une particularité importante : ce sont des Cystiques polysomatiques. Nous disons « polysomatiques » et non « polycéphales » ; car chacun des corps produits en grand nombre par la vésicule caudale d'un Cœnure ne porte jamais qu'une tête. C'est là un fait qui justifie pleinement le démembrement du genre Polycephalus de Zeder, et sur lequel nous croyons devoir insister, car sa signification ne paraît pas avoir été comprise par les auteurs (1).

La vésicule caudale d'un Cœnure peut, comme celle d'un Cysticerque, produire par bourgeonnement exogène d'autres vésicules caudales. Paul Gervais (2) et Baillet (3) ont observé ce mode de prolifération chez le Cœnurus serialis; Cobbold (4)

(1) Cela tient à ce que la plupart des auteurs confondent, sous le nom de « tête », la tête et le corps des Cysticerques et des Cœnures.

(2) Cœnurus serialis (Mémoires de l'Académie des sciences de Montpellier, 1847, t. p. 98).

(3) Histoire naturelle des Helminthes des principaux Mammifères domestiques, p. 149.

(4) Parasites, a Treatise of Man and Animals including some account of the Ectozoa, p. 289-291.
A. VILLOT.

l’a décrit et figuré chez le *Cœnurus lemuris*; M. Mégnin (1) l’a aussi signalé chez son *Cœnurus polytuberculosus*.

Les colonies en grappe des Cœnures sont d’ailleurs faciles à distinguer de celles des Cysticerques; car, dans un cas comme dans l’autre, la prolifération de la vésicule caudale n’affecte en rien les caractères du genre. Le bourgeon vésiculaire d’un Cysticerque ne contient jamais qu’un corps, tandis que celui d’un Cœnure enporte toujours plusieurs.

Le genre *Cœnurus* ne renferme encore qu’un petit nombre d’espèces, très imparfaitement décrites pour la plupart. La mieux connue est le *Cœnurus cerebralis*, qui vit dans le cerveau de diverses espèces de Ruminants, et qui devient *Taenia cœnurus* dans l’intestin du Chien.

Genre ÉCHINOCOQUE (Echinococcus).

Les Cystiques réunis par Rudolphi sous la dénomination générique d’Échinocoques diffèrent beaucoup moins des Cœnures et des Cysticerques qu’on ne l’a cru jusqu’ici; et l’idée que l’on se fait généralement de leur structure a besoin d’être précisée et rectifiée sur bien des points. L’enveloppe adventice fournie par l’hôte mise à part, il est d’usage de distinguer dans une Échinocoque normale et entièrement développée:

1° un certain nombre de têtes (Köpfchen); 2° un certain nombre de vésicules proligères (Brutkapseln); 3° une vésicule mère (Mutterblase). On admet généralement que chacune des têtes de l’Échinocoque se compose de deux parties invaginaées l’une dans l’autre et homologues à celles que nous avons désignées sous le nom de tête et de corps chez les Cysticerques et les Cœnures. Quant aux vésicules proligères et à la vésicule mère, on les considère, dans leur ensemble, comme les équivalents morphologiques de la vésicule caudale des Cœnures et des Cysticerques.

Cette détermination des diverses parties constitutantes de l’Échinocoque nous paraît tout à fait inexacte.

Et d’abord nous ne pouvons assimiler, comme le font les auteurs, la tête de l’Échinocoque au bourgeois somato-céphalique d’un Cœnure ou d’un Cysticerque. Nous avons vu, en effet, que le corps des Cysticerques et des Cœnures ne joue pendant la phase cystique d’autre rôle que celui d’une enveloppe et qu’il ne prend aucune part à la formation du strobile. Or, on sait que la tête de l’Échinocoque est conservée en totalité et constitue le scolex. « Il est impossible, dit Leuckart (1), que la partie postérieure de la tête de l’Échinocoque puisse représenter une « vésicule caudale ». Cela est parfaitement évident ; mais il est non moins évident, pour les raisons que nous venons de donner que cette partie de l’Échinocoque ne peut représenter le corps d’un Cysticerque ou d’un Cœnure. Quant à l’invagination de la partie antérieure dans la partie postérieure, elle ne saurait, comme le veut Leuckart, correspondre à l’invagination du bourgeois somato-céphalique d’un Cœnure ou d’un Cysticerque dans sa vésicule caudale, puisque, de l’aveu même du naturaliste allemand, la partie postérieure de la tête d’une Échinocoque ne représente pas une vésicule caudale.

On ne peut pas davantage assimiler une vésicule proligère à la vésicule caudale d’un Cœnure ou d’un Cysticerque. Les vésicules proligères ne procèdent pas directement du proscolex, ce sont des formations secondaires, issues du bourgeois de la vésicule mère, tout comme le bourgeois somato-céphalique d’un Cysticerque ou d’un Cœnure. D’autre part, si nous assimilons la vésicule proligère à une vésicule caudale, à quoi comparerons-nous la vésicule mère? Encore à une vésicule caudale, nous dira-t-on. Dans ce cas, il faut admettre deux sortes de vésicules caudales chez les Échinocoques. Et c’est ce qu’on a fait. De là, une distinction bien tranchée entre les Cysticerques et les Cœnures d’une part, et les Échinocoques

Tout cela est absolument inadmissible, comme nous allons le montrer.

En tenant compte de toutes les données fournies par l'étude de la structure et du développement, on est naturellement amené à établir de la manière suivante les homologies des Cysticerques, des Cœnures et des Échinocoques. Les têtes de l'Échinocoque représentent à elles seules autant de scolex, autant de têtes de Cœnures ou de Cysticerques. La partie antérieure, celle qui est invaginée, constitue la tête proprement dite ; la partie postérieure est le cou. Chaque vésicule proligère représente un corps de Cysticerque ou de Cœnure (2). Quant à la vésicule mère, elle est l'homologue de la vésicule caudale des Cœnures et des Cysticerques. Il y a donc, par le fait, unité de plan, unité de composition entre les Cysticerques, les Cœnures et les Échinocoques.

Il existe cependant, entre les uns et les autres, des différences caractéristiques, qui ne permettent pas de confondre ces trois genres. Nous avons vu que les Cysticerques sont des Cystiques monosomatiques et monocéphales ; les Cœnures, des Cystiques polysomatiques et monocéphales. Les Échinocoques sont des Cystiques à la fois polysomatiques et polycéphales. Leur vésicule caudale (vésicule mère) produit par bourgeonnement de nombreux corps (vésicules proligères), et ceux-ci portent de nombreuses têtes. Les Échinocoques sont, en réa-

(2) Kuckenmeister (Die Parasiten des Menschen, p. 61-62, 2e édition) compare la vésicule proligère (Brutkapsel) au receptaculum capitis de Leuckart, c'est-à-dire au feuillet interne du corps des Cysticerques et des Cœnures. Je la compare, moi, à la totalité du corps d'un Cysticerque ou d'un Cœnure ; car on n'observe, chez l'Échinocoque, aucune délamination du corps.
lité, les seuls Cystiques vraiment polycéphales, et Rudolphi aurait parfaitement pu conserver pour elles la dénomination générique de Polycephalus, créée par Zeder. D’autres traits distinctifs doivent, d’ailleurs, figurer dans leur caractère. La vésicule caudale de l’Échinocoque est revêtue d’une cuticule très épaisse, formée de feuilllets superposés. Cette cuticule se trouve, par cela même, dans l’impossibilité de prendre part au bourgeonnement de la membrane germinale sous-jacente, de sorte que les vésicules proligères et les têtes ne peuvent se dévaginer et faire saillie au dehors, comme on l’observe pour le corps et la tête d’un Cœnure ou d’un Cysticerque. Il faut noter aussi dans le corps et la tête de l’Échinocoque une différenciation de tissus bien moins avancée que dans le corps et la tête du Cysticerque ou du Cœnure. L’invagination de la tête proprement dite dans le cou constitue une disposition qui doit encore être prise en considération, bien qu’elle ne soit pas exclusivement propre à l’Échinocoque.

La tête de l’Échinocoque, considérée dans son mode de formation, a donné lieu aux mêmes controverses que celle des Cysticerques ; et il est vraiment fort difficile, quand on lit les auteurs, de se faire une idée nette de cette phase du développement. On est en présence d’opinions absolument contradictoires ; ce ne sont pas seulement les interprétations des auteurs qui se trouvent mises en question, mais les observations, les faits mêmes qui servent de base à leurs interprétations. On peut arriver cependant à faire la part de l’erreur et de la vérité comme on va le voir.

Disons tout d’abord que c’est à tort que l’on a assimilé jusqu’ici l’ébauche de la tête de l’Échinocoque au bourgeon somato-céphalique des Cysticerques. L’ébauche de la tête de l’Échinocoque correspond à l’ébauche de la tête du Cysticerque. Le bourgeon somato-céphalique des Cysticerques est représenté chez l’Échinocoque par la vésicule proligère et l’ébauche de la tête, considérées dans leur ensemble. Quant au développement du rudiment céphalique, il peut s’effectuer, chez l’Échinocoque comme chez
les Cysticerques, de deux manières bien différentes. Le bourgeon céphalique peut se développer en faisant saillie dans la cavité de la vésicule proligère, c'est-à-dire par dévagination; ou bien, il peut faire saillie dans la cavité de la vésicule mère, en s'invaginant sur lui-même (retournement en doigt de gant). C'est un point sur lequel les auteurs ne sont nullement d'accord. Wagener et Rasmussen n'admettent que le premier mode de formation. Leuckart (1) et Moniez (2) admettent les deux modes de formation, mais ils ne s'entendent pas sur la valeur respective de chacun de ces modes. Leuckart considère le développement par invagination de la tête sur elle-même comme représentant l'évolution normale; la dévagination dans la cavité de la vésicule proligère n'étant, selon lui, qu'un état secondaire. Moniez, au contraire, considère ce dernier mode comme la règle; et il doute que les bourgeons formés par invagination de la tête sur elle-même puissent jamais se clévager et pénétrer dans la cavité de la vésicule proligère; mais les raisons qu'il donne pour justifier son doute ne nous paraissent pas concluantes. Nous pensons, quant à nous, que les deux modes de développement ont la même valeur, sinon la même fréquence, et qu'on doit les admettre l'un et l'autre au même titre. Par contre, nous repoussons entièrement l'hypothèse de Naunyn, relative à un troisième mode de développement. Naunyn figure des bourgeons invaginés sur eux-mêmes, plongeant dans la vésicule proligère et communiquant par leur cavité d'invagination avec la cavité de la vésicule mère. Qu'on la suppose primitive ou secondaire, une pareille orientation du bourgeon céphalique est absolument impossible. Il suffit, pour se rendre compte de cette impossibilité, de se représenter un tel bourgeon à l'état de dévagination. La tête du scolex se trouverait dirigée vers le centre de la cavité de la vésicule mère, au lieu de faire face au pédicule d'invagination de la vésicule proligère, ainsi que l'exigent toutes les homologies.

(2) Essai monographique sur les Cysticerques, p. 86-91.

ARTICLE N° 4.
La multiplication de l’individu ne porte pas seulement, chez l’Échinocoque, sur la tête et le corps, elle peut aussi, comme chez les Cœnures et les Cysticerques, affecter la vésicule caudale. La vésicule mère de l’Échinocoque produit souvent par bourgeonnement, exogène ou endogène, des vésicules secondaires (Tochterblasen), qui bourgeonneront elles-mêmes de nombreuses vésicules proligères et de nombreuses têtes. Bien plus, des vésicules secondaires peuvent, à leur tour, produire des vésicules tertiaires (Enkelblasen), qui se comporteront comme la première et les secondes. Il arrive quelquefois, lorsque le bourgeonnement est exogène, que les vésicules secondaires restent reliées les unes aux autres par leur pédoncule. On donne à la colonie ainsi formée le nom d’Échinocoque multiloculaire. Celle-ci a tout à fait l’apparence extérieure des colonies en grappe des Cysticerques et des Cœnures ; mais là se borne l’analogie. Multiloculaire ou non, l’Échinocoque reste Échinocoque par tous ses caractères essentiels.

On ne connaît encore bien positivement qu’une espèce d’Échinocoque : l’Echinococcus polymorphus de Diesing, qui est parasite de l’Homme et d’un grand nombre d’autres espèces de Mammifères, et qui se transforme en Tænia echinococcus dans l’intestin du Chien. Les Échinocoques, désignées par les auteurs sous les noms d’Echinococcus altricipariens, d’Echinococcus scoleceppariens, d’Echinococcus multilocularis, ne représentent en réalité ni des espèces, ni même des variétés, comme on l’a dit, mais bien des phases diverses du développement de l’Echinococcus polymorphus. Des Échinocoques ont été signalées chez diverses espèces d’Oiseaux, mais leurs caractères spécifiques auraient besoin d’être précisés. Quant au Cystique du Lombric, dont on a voulu faire une Échinocoque, il n’appartient certainement pas au genre Echinococcus; il n’a, pour ainsi dire, aucun rapport avec les Échinocoques et doit prendre rang dans notre second groupe.

Cystiques dont la vésicule caudale se forme par bourgeonnement du Proscolex, c'est-à-dire par adjonction d'une partie nouvelle.

Ce deuxième groupe correspond aux « Cysticercoiden » de Leuckart (1) et aux « Platycercen » de Küchenmeister. Ce sont des Cystiques qui se distinguent à première vue de ceux du premier groupe par une différenciation moindre de leurs tissus; et cette simplicité relative de leur organisation a fait méconnaître jusqu'ici leurs véritables homologies. On observe dans les Cystiques de notre deuxième groupe non seulement un tête, un corps et une vésicule caudale, mais encore une quatrième partie, que nous désignons sous le nom de blastogène. La tête représente à elle seule le futur Scolex. Le corps et la vésicule caudale sont des parties propres au Cystique. Quant au blastogène, il représente le Proscolex, qui conserve ici son autonomie et tous ses caractères embryonnaires.

Or nous montrerons, en décrivant les genres, que les auteurs ont attribué au Scolex non seulement la tête, mais encore le corps du Cystique, qu'ils considèrent à tort comme la partie postérieure de la tête, et qu'ils ont attribué au Proscolex non seulement le blastogène, mais encore la vésicule caudale, contrairement à toutes les données fournies par l'étude de la structure et du développement.

Les Cystiques de notre deuxième groupe sont tous parasites des Invertébrés; ils se logent dans les tissus ou dans la cavité du corps de leur hôte, mais celui-ci ne leur fournir pas d'enveloppe protectrice.

PREMIÈRE SECTION

Cystiques dont la vésicule caudale se forme par bourgeonnement endogène.

La tête des Cystiques appartenant à cette première section

(1) Moins les Gryporhynques, que nous avons placés dans notre premier groupe.

ARTICLE No 4.
Cystiques des ténias.

est enveloppée non seulement par le corps et la vésicule caudale, mais encore par le blastogène.

Genre POLYCERQUE (Polycercus).

Le nouveau genre que nous proposons sous ce nom a pour type le Cystique du Lombric (Lumbricus terrestris), découvert à Odessa par Mecznikoff (1).

Il ressort de la description et des figures données par le savant naturaliste russe que le Cystique du Lombric se compose, à l'état de complet développement, de quatre parties bien distinctes : d'une tête, d'un corps, d'une vésicule caudale et d'un blastogène. La tête est invaginée dans le corps, mais non sur elle-même, car la trompe et les crochets sont toujours exserts. Le corps est invaginé dans la vésicule caudale, et cette dernière est elle-même invaginée dans le blastogène, qui lui sert d'enveloppe et est revêtue d'une épaisse cuticule. Toutes ces parties sont d'abord en parfaite continuité les unes avec les autres ; mais le pédicule qui relie la vésicule caudale au blastogène ne tarde pas à se rompre, de sorte que le Cystique proprement dit, composé d'une tête, d'un corps et d'une vésicule caudale, reste libre dans la vésicule blastogénique. Celle-ci, qui représente évidemment le Proscolex, est de toutes les parties celle qui se forme la première ; les autres parties sont des formations secondaires qui naissent sur le blastogène par bourgeonnement. Ajoutons, et c'est là ce qui constitue le trait caractéristique du genre, que le blastogène ne se borne pas à la production d'une seule vésicule caudale ; il se forme ordinairement une douzaine de vésicules caudales dans son intérieur, et chacune de ces vésicules contient elle-même un corps et une tête. Le Cystique du Lombric n'est, en réalité, ni polycéphale, ni polysomatique, mais bien polycerque.

Il nous reste à expliquer comment un type si nettement caractérisé a pu être confondu jusqu'ici avec celui des Échino-

coques. Cela n’est pas facile en vérité, et va nous obliger de relever dans les auteurs de nombreuses erreurs d’interprétation.

Mecznikoff compare la tête du Polycerque à celle de l’Échinocoque, et, partant de cette idée fausse que la partie postérieure de l’Échinocoque représente un corps de Cystique, il prend le véritable corps du Polycerque pour une vésicule caudale. Quant à la vésicule caudale du Polycerque, il l’assimile à la vésicule proligère de l’Échinocoque ; mais comme il a pris le corps du Polycerque pour une vésicule caudale, il arrive à cette conclusion que la vésicule proligère de l’Échinocoque n’est nullement l’homologue de la vésicule proligère d’un Cysticerque. Le blastogène du Polycerque devait être et a été effectivement comparé par Mecznikoff à la vésicule mère de l’Échinocoque.

Leuckart (1) rattache aussi le Cysticerque du Lombric au type de l’Échinocoque, mais il le place parmi ses Cysticercoïdes et n’accepte pas toutes les homologies proposées par Mecznikoff. Pour Leuckart, la tête du Polycerque ne représente pas toute la tête de l’Échinocoque, mais seulement la partie antérieure de la tête, celle qui, chez l’Échinocoque, se trouve à l’état de rétraction ; et il donne à l’autre partie, c’est-à-dire au véritable corps du Polycerque, le nom de « cou » (Hals), en le comparant à la partie postérieure de la tête de l’Échinocoque. Le savant helminthologue de Leipzig assimile le blastogène du Polycerque à la vésicule proligère de l’Échinocoque. Voici comment il s’exprime : « Diese Blase ist also die Brutstätte der eingeschlossenen Cysticercoïden, in gewisser Beziehung einer Brutkapsel der Echinocoecen oder, wenn man lieber will, einer Cœnurusblase vergleichbar und wie letztere sonder Zweifel auf den sechshakigen Embryo zurückzuführen. » Mais si le blastogène du Polycerque représente la vésicule proligère d’une Échinocoque ou la vésicule caudale d’un Cœnure, à quoi correspond, dans l’Échinocoque ou le Cœ-

(1) *Die Parasiten des Menschen*, Bd. I, p. 464-466, fig. 213 (2e édition).
nure, la vésicule caudale du Polycerque? A rien, évidemment. Aussi Leuckart, après avoir assimilé le blastogène du Polycerque à la vésicule proligère de l'Échinocoque, est-il obligé d'ajouter : « Nur dass dabei nicht bloss Kopf und Hals sich bilden, sondern als drittes Glied noch eine Art Schwanzblase sich anfügt. »

Moniez (1) considère le Cystique du Lombric comme une véritable Échinocoque. Il admet les homologies établies par Leuckart et pense, avec le naturaliste allemand, « que Metzchnikoff confond la partie postérieure du corps du jeune Tænia avec la vésicule caudale, qui provient toujours de l'embryon hexacanthe. » Pour Moniez comme pour Leuckart, la vésicule proligère de l'Échinocoque est l'homologue de la vésicule caudale des Cysticerques, et il assimile aussi le corps du Polycerque (Schwanzblase de Mecznikoff) à la partie postérieure de la tête de l'Échinocoque. Quant à la véritable vésicule caudale du Polycerque, nous ne savons ce que le savant helminthologiste de Lille veut en faire; il n'en parle pas.

Le plus difficile, lorsqu'on compare notre Polycerque à l'Échinocoque, consiste, en effet, à ramener les deux formes au même nombre de parties. Nous en trouvons trois chez l'Échinocoque, quatre chez le Polycerque. De quelque manière qu'on s'arrange, il y a là une différence fondamentale qui ne peut être niée. Cette différence dans le nombre des parties suffirait déjà, à elle seule, pour nous montrer que le Polycerque et l'Échinocoque appartiennent à deux types bien distincts; elle s'explique par le mode de formation de la vésicule caudale et se trouve clairement exprimée par notre classification. Le type de l'Échinocoque appartient à notre premier groupe; celui du Polycerque, au contraire, se subordonne à notre second groupe.

Ce que Leuckart et Moniez considèrent chez le Polycerque comme la partie antérieure de la tête représente en réalité toute la tête, tout le futur Scolex, et se divise, comme chez

(1) Essai monographique sur les Cysticerques, p. 125-126.
l'Échinocoque, en deux parties : la tête proprement dite, qui porte les ventouses et l'armature céphalique ; et le cou, qui lui fait suite. Mais il y a entre la tête de l'Échinocoque et celle du Polycerque une différence importante : la tête proprement dite de l'Échinocoque est invaginée dans le cou et les crochets sont renversés ; la tête proprement dite du Polycerque, au contraire, est exserte comme le cou, et les crochets ne sont pas renversés. Cette différence de disposition est la conséquence d'une autre différence qui porte sur le bulbe : le bulbe de l'Échinocoque est court et simple ; celui du Polycerque, au contraire, est fort long et enveloppé, comme nous le verrons souvent chez les Cystiques de notre deuxième groupe, par une sorte de gaine ou de fourreau qui le fait paraître double.

La partie du Polycerque improprement désignée sous le nom de cou (Hals) par Leuckart, de vésicule caudale (Schwanzblase) par Mecznikoff, correspond à un corps de Cystique par ses connexions, sa structure et ses usages. C'est une vésicule qui sert d'enveloppe à la tête, au futur Scolex, et qui ne prend aucune part à la formation du Strobile. Elle représente le corps des Cysticerques et des Cœnures, et ce que les auteurs désignent sous le nom de vésicule proligère chez l'Échinocoque.

La véritable vésicule caudale du Polycerque est homologue, par ses connexions et sa structure, à la vésicule caudale des Cysticerques et des Cœnures, à la vésicule mère de l'Échinocoque. Elle se trouve, en effet, en continuité de tissu avec le corps et lui sert d'enveloppe.

Le blastogène du Polycerque n'a d'homologue ni chez les Cysticerques, ni chez les Cœnures, ni chez les Échinocoques. Il joue le rôle d'une troisième enveloppe et représente à lui seul tout le Proscolex.

La conclusion à laquelle nous sommes naturellement amené par cette comparaison détaillée, c'est qu'il n'existe point d'affinités véritables entre l'Échinocoque et le Polycerque. Le Cystique du Lombric n'appartient pas au même groupe que l'Échinocoque, et il ne représente nullement dans son groupe...
le type de l’Échinocoque. L’intéressant parasite découvert par Mecznikoff est un Cystique monocéphale, monosomatique et polycéreque. L’Échinocoque, au contraire, est un Cystique polycéphale, polysomatique et monocéreque. Les ressemblances sur lesquelles on s’est fondé pour rattacher les deux formes à un seul et même genre se réduisent en définitive à de simples analogies qui ne portent pas sur des parties homologues.

Le genre Polycerque ne comprend encore qu’une seule espèce, que nous désignerons sous le nom de Polycercus lumbrici. Le Polycerque du Lombric est, d’après Leuckart, la larve du Taenia nilotica, qui vit dans l’intestin du Cursorius isabellinus.

Genre MONOCERQUE (Monocercus).

Les Cystiques qui ont le plus d’affinités avec les Polycerques sont ceux que nous désignons sous le nom générique de Monocercus. Pour concevoir le type de ce nouveau genre, il suffit de se représenter un Polycerque dont le blastogène, au lieu de bourgeonner de nombreuses vésicules caudales, n’en produirait qu’une. Les Monocerques sont en quelque sorte des Polycerques non prolifères : la prolifération ou la non prolifération étant ici, comme en bien d’autres cas, le seul caractère qu’on puisse faire valoir pour distinguer les genres. Poly-cerques et Monocerques se ressemblent, en effet, par le nombre, la disposition et la structure de toutes leurs parties.

Le Cystique de l’Arion, décrit par les auteurs sous les noms de Cysticercus Arionis et de Scolex commutatus, est un Monocerque (Monocercus Arionis). Cette espèce intéressante, découverte par von Siebold (1), a été ensuite étudiée avec le plus grand soin par Meissner (2), Leuckart (3) et Moniez (4); mais

(3) Die Parasiten des Menschen, Bd. I, p. 458-461, fig. 209 (2e édition).
(4) Essai monographique sur les Cysticerques, p. 71-76.

ARTICLE N° 4
A. VILLOT.

il est de fait que ces savants helminthologistes ne sont nullement d'accord dans leurs interprétations.

La vésicule caudale a été rattachée par von Siebold et Meissner, sous le nom de *Hinterleib*, au corps du Cystique (*Vorderleib*). Leuckart, au contraire, a parfaitement montré, en s'appuyant sur des différences de structure, que le corps et la vésicule caudale du Cystique de l'Arion constituaient deux parties bien distinctes. On trouve, en effet, sous la cuticule de la vésicule caudale, deux couches de fibres élastiques entrecroisées, qui, par leur réfringence et la manière dont elles se comportent avec les réactifs, sont des plus caractéristiques.

La vésicule blastogénique a été décrite par les auteurs sous le nom de kyste (*Cyste* des naturalistes allemands). Leuckart la considère comme un véritable kyste (*Bindegewebeskyste*), c'est-à-dire comme une enveloppe adventice fournie par l'hôte. Meissner et Moniez y voient, au contraire, une partie intégrante du parasite. Tous deux invoquent, pour justifier leur manière de voir, l'existence d'une ouverture à la partie antérieure du kyste, ouverture située au-dessus de la tête du Cystique et pouvant lui livrer passage lors de sa dévagination. Meissner représente, en effet, dans sa figure 1, f, un « feiner kanal, welcher durch die Cyste auf (e) zuführt »; mais, comme le remarque très justement Küchenmeister (1), l'existence de ce canal n'est pas très facile à interpréter. Le célèbre médecin de Zittau propose l'explication suivante : « So wie sich das Gebilde bei Meissner darstellt, ist seine Cyste weniger als Cyste, als als Falte des Lungengewebes aufzufassen. Aber es lässt sich das Ganze nur verstehen, wenn man annimmt, dass ein Theil der als Cyste aufgeführten Schichten, oder wenigstens die innerste Lage derselben, den sogennanten kanal nach aussen hin verschliesst und noch zum Embryo gehörend den Stiel bildet, dessen Andeutung wir in fig. 17, a sehen. »

Il faut, il est vrai, si l'on considère le kyste comme une partie intégrante du Cystique, admettre qu'il existe à un moment

(1) *Die Parasiten des Menschen*, p. 65-66, fig. 16-17.
CYSTIQUES DES TÉNIAS.

37

donné quelque rapport de continuité entre le kyste et la vésicule caudale; mais il me semble que ce rapport de continuité ne peut se trouver au point indiqué par Küchenmeister. L’orifice de l’invagination du corps dans la vésicule caudale ne correspond pas à la partie postérieure de la vésicule caudale, mais bien à la partie antérieure de cette vésicule. Or, si l’on suppose le Cystique de l’Arion à l’état de dévagination, ce n’est point avec la vésicule caudale, mais bien avec le corps du Cystique que le kyste se trouverait en rapport; ce qui est impossible. Le canal figuré par Meissner dans l’épaisseur du kyste ne représente certainement autre chose qu’une simple dépression du kyste, et n’a aucune adhérence, aucun rapport de continuité avec la vésicule caudale; il ne peut donc jouer aucun rôle dans la dévagination du Cystique. Celui-ci, dévaginé ou non, ne peut sortir de son kyste sans le déchirer. D’autre part, si l’on considère le kyste comme une partie intégrante du Cystique, il s’agit de déterminer cette partie. À quoi devons-nous la comparer dans les autres Cystiques? À la vésicule caudale, nous dit-on. Mais alors à quoi comparrons-nous la véritable vésicule caudale du Cystique de l’Arion?

En soutenant que le kyste du Cystique de l’Arion est une partie du parasite lui-même, et non un produit de l’hôte, Meissner et Moniez étaient dans le vrai; mais s’ils ont le mérite d’avoir exprimé les premiers cette idée parfaitement juste, il faut bien reconnaître que leur interprétation pèche par la base. C’était une question à reprendre et que je crois avoir résolue dans une publication récente (1). J’ai pu me convaincre, en effet, par l’étude du Cystique de l’Arion (2) et d’une espèce nouvelle, très voisine, dont je par-

(1) Sur une nouvelle larve de Cestoïde, appartenant au type du Cystinoerque de l’Arion (Comp. rend. de l’Acad. des sciences, séance du 21 février 1881).

(2) Mes observations relatives à cette espèce ont porté tout d’abord sur trois préparations microscopiques que le Dr Moniez avait eu l’extrême obligation de m’envoyer; mais j’ai eu ensuite le plaisir de recueillir moi-même le Cystique de l’Arion aux environs de Grenoble.
lerai plus loin, que le soi-disant kyste n'a nullement la structure qu'on lui avait attribuée jusqu'ici. Ce n'est point, comme on l'a dit, une enveloppe épaisse, de nature cuticulaire, formée de couches concentriques, mais bien une membrane fort mince, circonservant une grande cavité remplie de liquide. Cette membrane (fig. 13) ne ressemble en rien par sa structure à la vésicule caudale. La couche sous-cuticulaire n'est point composée de fibrilles, mais bien de fines granulations, formant de petits groupes, séparés les uns des autres par une bordure hyaline. Cette disposition aréolaire, dans laquelle il ne faut voir autre chose qu'un tissu cellulaire en voie de régression, est mise en évidence par le carmin. Le soi-disant kyste des Monocerques est, en réalité, une enveloppe très fragile, composée d'une mince cuticule et d'une couche sous-jacente de nature cellulaire, qui se déchire avec la plus grande facilité et laisse échapper le liquide qu'elle renferme. L'abondance plus ou moins grande du liquide intravésiculaire, son déplacement sous l'influence de la pression, déterminent le plissement de la membrane d'enveloppe et forment à la surface du kyste des rides concentriques, qui ont été prises par les observateurs pour les interstices des diverses couches d'une cuticule (fig. 7). L'erreur ici commise a été, comme cela arrive souvent, de prendre pour une coupe optique une simple vue de face.

Pas plus que mes devanciers, je ne suis encore parvenu à observer les relations primitives du kyste avec la vésicule caudale. Chez tous les individus que j'ai examinés, il n'existait plus aucune adhérence, aucune continuité de tissu entre le kyste et la vésicule caudale; mais j'ai constamment observé, à la partie postérieure de la vésicule caudale et du kyste, une sorte d'ombilic ou de dépression infundibuliforme, qui indique assez que les choses se passent ici comme chez le Polycerque du Lombric. Le kyste du Monocerque, comme le blastogène du Polycerque, représente à lui seul le Proscolex. La vésicule caudale est une formation secondaire, qui procède du blastogène par bourgeonnement endogène. Le pédicule se rompt de
bonne heure par suite de sa friabilité et de la consistance toujours croissante de la vésicule caudale, peut-être aussi par les contractions de cette dernière ; de sorte que le futur Scolex, enveloppé de son corps et de sa vésicule caudale, finit par être libre dans le kyste, qui se distend de plus en plus et devient hydropique. Le blastogène du Monocerque ne diffère de celui du Polycerque que par l’épaisseur moindre de son revêtement cuticulaire.

Je prévois une objection. On ne peut, me dira-t-on, considérer le kyste du Cystique de l’Arion comme représentant à lui seul le blastogène, car il ne porte jamais les crochets de l’hexacanthe. Meissner, Leuckart et Moniez prétendent, en effet, avoir trouvé les crochets du Proscolex sur la vésicule caudale ou même quelquefois sur le corps du Cystique. Or ce sont là des faits qui me semblent bien difficiles à admettre, et qui me font supposer qu’il y a eu encore ici quelque erreur, non point d’observation, mais bien d’interprétation. Dans le cas où le doute n’est pas possible, chez les Cystiques du Ténébrion et du Trichodecte, la situation des crochets du Proscolex est parfaitement constante. On les trouve toujours sur le blastogène et en arrière de la vésicule caudale, celle-ci se formant à la partie postérieure du Proscolex. Or, si la vésicule caudale et le corps du Cystique de l’Arion représentent la partie postérieure du Proscolex, comment se fait-il que ce soient justement ces parties qui portent les crochets de l’hexacanthe? Faut-il admettre ici une autre orientation du Proscolex? Les auteurs ne le disent pas ; mais il est bien évident que c’est la seule manière d’expliquer les faits qu’ils rapportent. Cette exception à la règle étant admise, une autre difficulté se présente. Si les crochets de l’hexacanthe sont bien là ou Meissner, Leuckart et Moniez nous les indiquent, il faut attribuer au Proscolex non seulement la vésicule caudale, mais encore le corps du Cystique, qui appartient à n’en pas douter au bourgeois somato-céphalique. Cela seul suffirait, selon nous, pour démontrer l’impossibilité des faits que l’on a cru observer. Nous sommes persuadé qu’on a pris pour les crochets de
l'hexacanthe quelque portion des fibres élastiques, très réfringentes, que l'on observe sous la cuticule de la vésicule caudale; et c'est là, croyons-nous, ce qui explique pourquoi les auteurs ne s'accordent pas sur la situation de ces soi-disant crochets : les uns les plaçant à la partie antérieure, les autres à la partie postérieure de la vésicule caudale. Les véritables crochets du Proscolex doivent être cherchés sur le kyste; et nous ne doutons pas qu'on ne les y découvre le jour où l'on parviendra à mettre la main sur les premières phases du développement du Cystique de l'Arion.

La tête du Cystique de l'Arion ressemble beaucoup, par sa structure et sa disposition, à celle du Cystique du Lombric. La trompe est invaginée dans la tête proprement dite, et celle-ci se trouve elle-même, ainsi que le cou, invaginée dans le corps. Il n'y a ni renversement des crochets ni retournement de la tête. Cette disposition est d'une constance absolue; et, si j'en juge par ce que j'ai observé chez les Staphylocystes, elle doit être primitive. Leuckart est d'un avis contraire. L'éminent helminthologiste suppose que le bourgeon somato-céphalique est, au début du développement, entièrement creux, et que le retournement affecte primitivement la tête aussi bien que le corps. Lorsque ce dernier a pris tout son accroissement, la tête se dévagine et vient remplir la cavité d'invagination. La disposition qu'on observe chez les individus entièrement développés ne représente donc, selon Leuckart, qu'une disposition secondaire, nécessitée par la longueur du rostellum et propre aux espèces qui offrent ce développement exceptionnel de la trompe. Cette interprétation des faits nous semble avoir été imaginée par le naturaliste allemand pour justifier sa manière de concevoir le développement des Cystiques en général, qui est trop exclusive, ainsi que nous l'avons montré, alors même qu'on voudrait en restreindre l'application aux Cysticerques proprement dits. Ajoutons que Leuckart confond chez le Cystique de l'Arion, comme chez les Cysticerques proprement dits, le cou avec le corps sous le nom de « Hals ». Répétons que le véritable cou, celui qui est appelé à figurer dans le futur strobile,
est représenté par la partie postérieure de la tête. Quant au corps, qui relie la vésicule caudale à la tête, il ne constitue qu’une simple enveloppe temporaire, qui se détruit lorsque le scolex est mis en liberté.

Le Monocerque de l’Arion est la larve du *Taenia Arionis*, qui vit dans l’intestin du *Totanus hypoleucos*. Ses caractères spécifiques se trouvent dans l’armature céphalique. Le bulbe et la gaine du bulbe sont très allongés. Les crochets, au nombre de vingt, sont disposés sur deux rangs et de taille différente. Ceux du premier rang, qui sont les plus grands, ont une longueur totale de $0^{\text{mm}}.046$. Le manche mesure $0^{\text{mm}}.022$; la lame, $0^{\text{mm}}.020$. La largeur du talon est de $0^{\text{mm}}.010$. La longueur totale des crochets du second rang ne dépasse pas $0^{\text{mm}}.042$. Pour la forme des crochets, nous renvoyons le lecteur au dessin que nous en donnons (fig. 11).

J’ai découvert, en 1880, dans un *Glomeris limbatus* recueilli à la Grande-Chartreuse, une larve de Ténia, qui est très voisine du Cystique de l’Arion. Cette deuxième espèce, que j’ai décrite sous le nom provisoire de *Cysticercus Glomeridis*, prend naturellement place dans notre genre Monocerque et doit désormais porter le nom de *Monocercus Glomeridis*. À ma description (1), que je crois inutile de reproduire ici, je joins aujourd’hui quelques dessins (fig. 6-10, 12-13), en faisant ressortir les caractères distinctifs de l’espèce. Le Monocerque du Gloméri se distingue du Monocerque de l’Arion par les détails de son armature céphalique. Le bulbe du Monocerque du Gloméri est moins allongé et plus robuste. Les crochets sont, il est vrai, en même nombre et semblablement disposés chez les deux espèces, mais leurs dimensions offrent des différences bien constantes. Ceux du premier rang ont, chez le *Monocercus Glomeridis*, une longueur totale de $0^{\text{mm}}.060$. Le manche mesure $0^{\text{mm}}.040$; la lame $0^{\text{mm}}.020$. Leur largeur, au talon, est de $0^{\text{mm}}.014$. La longueur totale des crochets du

second rang ne dépasse pas \(0^\text{m} 050\). Les crochets du Monocerque du Gloméris sont, d'une manière générale, plus grands et plus massifs que ceux du Monocerque de l'Arion ; et leur forme est des plus caractéristiques pour chacune des espèces. Nous les avons figurés les uns et les autres avec le même grossissement ; et il suffit de jeter un coup d'œil sur nos dessins (fig. 10 et 11) pour se convaincre de la légitimité des deux espèces.

La découverte du Monocerque du Gloméris prouve que le type du Cystique de l'Arion n'est pas propre aux Mollusques, contrairement aux prévisions du Dr Krabbe (1), le savant helminthologiste de Copenhague. On ne sait encore à quel Ténia se rapporte cet intéressant parasite ; on peut du moins supposer que son hôte définitif est, comme celui du Ténia Arionis, un oiseau de l'ordre des Échassiers. La Bécasse (Scolopax rusticolus) est le seul Échassier qui fréquente les bois habités par le Gloméris bordé ; mais cet oiseau délicat se nourrit plutôt de Vers que de Myriapodes. Une comparaison attentive des crochets du Monocerque du Gloméris avec ceux des Ténias observés jusqu'ici dans la Bécasse permettra sans doute de résoudre la question que nous soumettons aux helminthologistes.

Je crois, d'ailleurs, que d'autres Monocerques se trouvent encore parmi les Cystiques déjà décrits. Tel est vraisemblablement le cas du Cystique signalé par Leuckart (2) dans le foie du Lymnaeus perger et rapporté d'après son armature céphalique au Ténia microsoma du Canard sauvage. Nous l'inscrirons provisoirement sous le nom de Monocercus Lymnæi. Le Cystique décrit par Ratzel (3) sous le nom de Cysticercus lumbriculi est aussi très probablement un Monocerque. Autant que j'en puis juger d'après les dessins donnés par le naturaliste allemand, la vésicule désignée sous le nom de Blasenschicht représente le blastogène, et la Chilinschicht la vésicule cau-

(1) Bidrag til Kundskab om Flugenes Bøndelorme, p. 118.
(2) Die Parasiten des Menschen, t. 1, p. 461 (2e édition).
(3) Zur Entwicklungsgeschichte der Cestoden (Arch. für Naturg., 1868, p. 147-149, Taf. IV, fig. 5-7).
Cystiques des ténias.

Les rapports de continuité du blastogène avec la vésicule caudale seraient ici permanents. Le pédicule d'invagination se trouve, en effet, très nettement indiqué. La trompe paraît invaginée sur elle-même et les crochets sont renversés, contrairement à ce qu'on observe chez les autres Monocerques. Le bulbe porte une couronne simple de dix crochets, semblables à ceux du *Taenia crassirostris*. Aussi pensons-nous, avec le Dr von Linstow (1), que le *Monocerus lumbriciuli*, parasite du *Scenurus variegatus*, achève son développement dans l'intestin des Bécassines, des Chevaliers et des Pluviers, qui sont les hôtes ordinaires du *Taenia crassirostris*.

Deuxième section

Cystiques dont la vésicule caudale se forme par bourgeonnement exogène.

La tête des Cystiques appartenant à cette deuxième section n'est enveloppée que par le corps et la vésicule caudale.

Genre CERCOCYSTE (*Cercocystis*).

Nous proposons de désigner sous cette dénomination générique les Cystiques non prolifères dont le blastogène, après avoir bourgeonné la vésicule caudale, reste adhérent à cette vésicule et lui forme une sorte d'appendice caudal.

La seule et unique espèce que l'on puisse actuellement rapporter à ce genre est le Cystique découvert par Stein (1) dans la larve du *Tenebrio molitor*. Cette curieuse espèce, qui paraît très rare, figure dans nos catalogues sous les noms de *Cysticerus tenebrionis* et de *Scolex decipiens*; elle devra maintenant porter le nom de *Cercocystis Tenebrionis*.

N'ayant point observé nous-même le Cercocyste du Ténébrion, nous n'entreprendrons pas d'en donner ici une descrip-

(1) Beobachtungen an neuen und bekannten Helminthen (Arch. für Naturg., 1875, p. 183).

tion détaillée; mais il est indispensable que nous fixions une fois pour toutes la nomenclature et les homologies de ses diverses parties constitutantes.

Ce que Moniez (1) appelle, avec Stein et von Siebold, la tête du futur Ténia représente en réalité à la fois la tête et le corps du Cystique. La tête, qui est, comme à l'ordinaire, invaginée dans le corps, constitue à elle seule le futur scolex, la tête et le cou du futur strobile. Le corps du Cystique n'est qu'une enveloppe destinée à disparaître dans les phases ultérieures du développement. Le « Cystenkörper » et le « Cystenschwanz », que Stein considérait comme un produit du Ténébrion, comme un simple kyste, appartiennent certainement au parasite. La présence des six crochets de l'hexacanthe sur le « Cystenschwanz » l'indiquait déjà très clairement, ainsi que von Siebold l'avait fait remarquer ; et les rapports de continuité observés par Moniez entre le corps et le « Cystenkörper » ne laissent plus aucun doute à cet égard. Mais il est un point sur lequel je ne suis pas d'accord avec le savant helminthologiste de Lille. Moniez attribue, en effet, au proscolex non seulement le Cystenschwanz, mais encore le Cystenkörper. « Pour nous, dit-il, le « kyste », que nous avons reconnu être la vésicule, représente, avec la « queue », l'embryon hexacanthe très développé ; le bourgeonnement de la tête, ici comme ailleurs, se fait à l'une des extrémités ; mais tandis que, chez le Cysticercus pisiformis, la tête et les parties environnantes ont besoin pour se loger de la vésicule tout entière, qui se déchire et devient hydroïque, ici une portion seulement de l'hexacanthe est employée à ce rôle de protection. Cette portion est tiraillée, refoulée, distendue, les éléments cellulaires s'y transformeront en fibres et elle présentera le même aspect que la partie homologue des autres Cysticerques. La portion, qui n'aura pas à souffrir du développement de formations très volumineuses à son intérieur, restera à son état primitif et présentera ainsi un tissu semblable à celui de l'embryon hexacanthe ; en d'autres

(1) Essai monographique sur les Cysticerques, p. 75-79.
termes, elle conservera les caractères des tissus de l'embryon hexacanthe avant le bourgeonnement de la tête. Tout au plus une légère vacuole, de cause hydropique, viendra-t-elle peut-être altérer sa constitution. Pour moi, au contraire, le Cystenschwanz représente à lui seul tout le proscolex, tout l'hexacanthe ; le Cystenkörper est une formation secondaire, qui procède du Cystenschwanz par bourgeonnement exogène. La « queue » du Cystique du Ténébrion n’a, en réalité, point d'homologue chez les Cysticerques proprement dits ; c'est un blastogène comparable au « kyste » des Polycerques et des Mono- cerques. La véritable vésicule caudale de notre Cercocyste est représentée par le Cystenkörper.

Stein a décrit et figuré les divers stades du développement du Cystique du Ténébrion ; mais ses descriptions et ses figures sont malheureusement très insuffisantes. La figure 17, reproduite par Leuckart et Küchenmeister, représente probablement la première phase du bourgeonnement de la vésicule caudale (Cystenkörper) sur le blastogène (Cystenschwanz). Le parenchyme du proscolex est indiqué sur la figure par une masse centrale pointillée ; la zone claire, périphérique, qui a été prise à tort pour un kyste, est en réalité ce qu’il faut considérer comme la paroi du corps du proscolex. La partie située en avant sur le dessin, et qui correspond sans doute à la partie postérieure de l’hexacanthe, commence à se différencier. Par suite d’une active prolifération cellulaire, la couche périphérique du proscolex s’épaissit sur ce point ; c’est l’ébauche du bourgeon qui doit constituer la vésicule caudale. Cette interprétation soulève cependant une difficulté : les crochets du proscolex ont été figurés par Stein en dehors du soi-disant kyste, dans les tissus de l’hôte ; ces crochets ne sont donc plus en place, mais il est difficile d’admettre qu’ils se soient détachés naturellement, puisqu’ils persistent sur le blastogène du Cystique entièrement développé. Quant à la formation et au développement du bourgeon somato-céphalique, il est assez difficile de s’en faire une idée d’après les observations du naturaliste allemand. Stein se borne à nous dire :

Die weiteren Veränderungen des encystirten Embryo bestehen darin, dass sich an seinem vordern abgestutzten Ende eine immer weiter nach Innen vorschreitende Vertiefung bildet und dass sich gleichzeitig im Centrum des Embryonalkörpers aus der resorbiten Grundsubstanz der Kopf mit seinem Rüssel und seinen Saugnäpfen organisirt. » C'est évidemment une étude à reprendre, lorsque l'occasion se présentera.

Les caractères spécifiques du Cercocystis tenebrionis se trouvent certainement dans son armature céphalique, principalement dans le nombre et la forme de ses crochets. Autant que j'en puis juger par les dessins de Stein et par les mœurs de la larve du Tenebrio molitor, le Cercocyste du Ténébrion doit être la larve du Tænia microstoma, découvert par Dujardin (1) dans l’intestin de la Souris (Mus musculus).

Genre STAPHYLOCYSTE (Staphylocystis).

Est-il besoin d’ajouter, pour répondre à certaines critiques qui m’ont été adressées au sujet de la création de ce nouveau genre, que les Staphylocystes ne sont pas des Cysticerques prolifères, bien qu’ils soient des Cystiques monosomatiques et monocéphales? Ils ne sont pas non plus les seuls Cystiques qui forment des colonies en grappe. Ces caractères, qui pourraient

(1) Histoire naturelle des Helminthes, p. 565, pl. XII, fig. II.
(2) Annales des sciences naturelles, Zool., 6e série, t. VIII, n° 5, pl. 11, fig. 1-4.
rapprocher les Staphylocystes de certaines formes appartenant aux genres Cysticercus, Coenuurus et Echinococcus, n'ont, dans ma classification, qu'un rôle secondaire ; ils ne sauraient, par conséquent, mettre en question l'autonomie du groupe que j'ai établi sous le nom de Staphylocystis (1).

Je ne suis pas encore parvenu à observer, chez les Staphylocystes, la formation du blastogène, c'est-à-dire le stade représenté par la vésiculisation du Proscolex. Chez les individus les plus jeunes que j'aie pu me procurer, le blastogène avait déjà perdu les crochets de l'hexacanthe, pour entrer dans la phase dite du bourgeonnement ; mais, comme tous les bourgeons ne se forment pas en même temps, il m'a été possible de suivre dans tous ses détails, sur des bourgeons d'âge différent, le mode de formation et le développement de la vésicule caudale, du corps et de la tête (2).

Leuckart (3), qui, dans la nouvelle édition de son grand ouvrage, m'a fait l'honneur de me citer plusieurs fois et de reproduire quelques-uns de mes dessins, ne paraît pas m'avoir bien compris. Voici comment il s'exprime au sujet du développement des Staphylocystes : "Eine jede Colonie enthält grösse und kleinere Blasenwürmer, jüngere und ältere auf verschiedenen Entwickelungsstufen, sammlich mit einen dün- nen Stielchen am Hinterende der Schwanzblase, welches den Zusammenhang vermittelt. An dieser Stelle geschieht natürlich auch die Bildung der Knospen, die zunächst nichts Anderes als eine Zellenanhäufung darstellen, welche nach Aussen hervordrängt und von einer Fortsetzung der Cuticularhaut überzogen ist. Ueber die Metamorphose der Knospen kann ich hier hinweggehen, da sie nur eine Wiederholung dessen dar-

(1) Moniez, dans son Essai monographique sur les Cysticerques (p. 123-125), a parfaitement reconnu la légitimité de cette nouvelle dénomination.
(2) J'ai décrit et figuré le développement des Staphylocystes dans mon Mémoire sur les migrations et les métamorphoses des Ténias des Musaraignes (Annales des sciences naturelles, Zool., 6e série, t. VIII, p. 10-12, p. XI, fig. 3-5).
(3) Parasiten des Menschen, Bd. I, p. 461, 466, 467, 837, fig. 210, 214, 337).
A. VILLOT.

Mes observations sur le développement des Staphylocystes, antérieures, par la date même de leur publication (1877), à celles de Moniez sur les Cysticerques proprement dits, sont venues compléter, rectifier les quelques données que l’on possédait déjà sur le développement des Cysticercoides de Leuckart. Qu’il me soit permis de les résumer ici en quelques mots et de faire ressortir leur importance au point de vue de l’histoire générale des Cystiques des Ténias.

La vésicule caudale des Staphylocystes et celle des Cysticerques proprement dits ne se forment point de la même manière. Chez les Cysticerques proprement dits, comme chez les
Cœnures et les Échinocoques, la vésicule caudale procède du Proscolex par simple accroissement et modification de structure, sans qu'il y ait, à proprement parler, production d'une partie nouvelle. Le Proscolex grossit, se vésiculise ; son parenchyme se liquéfie, pendant qu'un système de fibres contractiles se développe sous sa cuticule ; il passe ainsi, directement, à l'état de vésicule caudale. Que toute la vésicule caudale soit ensuite employée pour protéger le futur Scolex, qu'une partie seulement soit utilisée et l'autre rejetée, peu importe. Il s'agit ici de son mode de formation. Or, il est de fait que chez les Cysticerques proprement dits, comme chez les Cœnures et les Échinocoques, il y a toujours transformation de la totalité du Proscolex en vésicule caudale. Est-ce ainsi que nous voyons les choses se passer chez les Staphylocystes ? — Nullement. Nous voyons bien aussi, chez nos Cysticercoides, une vésiculisation et un certain accroissement du Proscolex ou, si l'on aime mieux, de l'Hexacanthe ; mais la partie ainsi modifiée n'est point appelée à jouer le rôle d'une vésicule caudale. Cette partie propre aux Cystiques de notre second groupe, est celle que nous avons désignée sous le nom de blastogène. Elle est si peu essentielle, morphologiquement parlant, que nous la voyons, le plus souvent, être rejetée en totalité, lorsque le Cystique est entièrement développé. La vésicule caudale des Staphylocystes représente une partie nouvelle, qui se forme sur le blastogène par un véritable processus de bourgeonnement. Il n'y a donc pas lieu de se demander, comme le fait Moniez, « si l'embryon hexacanthe passe tout entier à la larve ». Aucune partie de l'hexacanthe ne passe au Staphylocyste ; mais la totalité de l'hexacanthe, à l'état de blastogène, sert de support aux divers bourgeons composant la colonie.

C'est par un second processus de bourgeonnement que la tête et le corps viennent se former au pôle antérieur de la vésicule caudale ; mais ce second bourgeon, au lieu d'être exogène comme le premier, est endogène. Le bourgeon somato-céphalique, à mesure qu'il se développe, s'enfonce de plus en plus dans la cavité de la vésicule caudale. Le point sur lequel je crois
devoir insister, c’est que le corps et la tête se forment et se développent en même temps ; leurs premiers linéaments apparaissent simultanément et affectent dès le principe la disposition qu’ils devront conserver. Le retournement en doigt de gant ne porte jamais que sur le corps. L’ébauche de la tête remplit déjà tout l’intérieur du bourgeon somato-céphalique ; et celui-ci n’est, par conséquent, jamais creux. La tête proprement dite et le cou sont et restent exserts ; et les crochets ne se renversent ni pendant ni après leur formation. Aussi ne pouvons-nous partager l’opinion de Leuckart, lorsqu’il considère cette disposition de la tête des Cysticercoïdes comme secondaire. Elle est primitive ; et elle n’a rien à voir avec la longueur plus ou moins grande du bulbe et de la trompe, puisqu’elle existe déjà alors que ces parties ne sont pas encore développées.

La tête, le corps, la vésicule caudale et le blastogène des Staphylocystes sont, à l’état de plein développement, des parties parfaitement caractérisées par leur structure.

La vésicule caudale des Staphylocystes est à la fois homologue par ses connexions, sa structure et son origine à la partie que nous avons désignée sous le même nom chez les Polycerques, les Monocerques et les Cercocystes ; elle est simplement homologue par ses connexions et sa structure à celle des Cystiques qui composent notre premier groupe (Cysticerques, Cenures et Échinocoques). La preuve que la vésicule caudale des Cysticercoïdes de Leuckart ne correspond nullement par son origine à celle des Cystiques proprement dits, nous est fournie par un fait important. Chez les Cysticerques proprement dits, ainsi que nous l’avons vu, la transformation du parenchyme embryonnaire en liquide intravésiculaire n’est jamais

ARTICLE N° 4.
bien complète. Les éléments non résorbés occupent le centre de la vésicule caudale et s'appliquent contre la paroi interne du bourgeon somato-céphalique, de sorte que les limites précises du bourgeon somato-céphalique et de la vésicule caudale sont le plus souvent difficiles à déterminer. Chez nos Staphylocystes, au contraire, ces limites sont parfaitement nettes, et l'on ne trouve dans la vésicule caudale ni parenchyme embryonnaire, ni liquide intravésiculaire ; la raison en est bien simple : c'est que la vésicule caudale ne représente point ici l'hexacanthe, mais bien une formation nouvelle, un bourgeon procédant de la zone périphérique du Proscolex. La vésicule caudale des Staphylocystes, comme celle de tous les Cystiques appartenant à notre second groupe, nous offre d'ailleurs la structure de la zone périphérique de la vésicule caudale des Cystiques de notre premier groupe ; nous y trouvons les mêmes tissus et les mêmes éléments anatomiques, et les processus de différenciation histologique sont identiques.

Le corps des Staphylocystes, comme celui des Cysticerques proprement dits, est formé de deux feuillets ; mais chez les Staphylocystes, comme chez tous les autres Cystiques de notre second groupe, cette partie est beaucoup moins développée et ses tissus constitutifs sont peu différenciés. Le feuillet externe (receptaculum capitis de Moniez) ne présente point les nombreux plis que l'on observe chez les Cysticerques proprement dits ; l'existence de la cavité interpariétale est mise en évidence par le déplacement des corpuscules calcaires qui s'accumulent vers l'extrémité postérieure du corps et y forment une sorte de bourrelet circulaire. Sur les autres points, les deux feuillets sont collés l'un sur l'autre par suite de la pression exercée par la tête. Cette réduction et cette dégénérescence, qui sont encore plus marquées chez d'autres Cysticercoïdes, ainsi qu'on le verra plus loin, montrent clairement que le corps des Cystiques n'est qu'une simple enveloppe, une partie essentiellement provisoire.

La tête des Staphylocystes, comme celle de tous les autres Cystiques des Ténias, représente à elle seule tout le futur
A. VILLOT.

Scolex; elle offre à considérer une partie antérieure ou tête proprement dite, et une partie postérieure à laquelle il convient de réserver le nom de cou. La tête proprement dite porte, comme à l'ordinaire, les organes de fixation : le bulbe et les ventouses; le bulbe est pourvu d'un fourreau bien développé et est armé d'une couronne simple de crochets; la trompe est longue et invaginée dans le fourreau du bulbe.

Le genre Staphylocyste est actuellement représenté par deux espèces que nous avons décrites et figurées, en 1877, sous les noms de Staphylocystis bilarius et de Staphylocystis micracanthus. Toutes deux sont parasites du Glomeris limbatis (1) et vivent dans le tissu adipeux qui entoure les tubes de Malpighi de ce Myriapode; elles passent à l'état de Scolex, de Strobile et de Proglottis dans l'intestin des Musaraignes terrestres; le Staphylocystis micracanthus est la larve du Tænia pistillum; le Staphylocystis bilarius est très probablement la larve du Tænia scalaris (2). Ces deux Ténias sont parasites du Sorex araneus.

Genre UROCYSTE (Urocystis).

Les Urocystes sont aussi des Cystiques dont la vésicule caudale procède du Proscolex par bourgeonnement exogène. Ils ont des affinités évidentes avec les Cercocystes et les Staphylocystes; mais ils n'en doivent pas moins, en raison de leurs caractères propres, former un nouveau genre. On ne connaît malheureusement de ce genre qu'une seule espèce que j'ai découverte en 1880, et à laquelle j'ai donné le nom d’Urocystis prolifer (3); elle est rare; je l'ai observée, la première fois,

(1) Ce n’est pas une raison, ce me semble, pour confondre ces deux espèces sous le nom de Cysticercus Glomeridis, ainsi que le fait Leuckart. Ce nom est d’autant plus impropre que les Staphylocystes ne sont pas les seuls Cystiques parasites des Glomérîs.

(2) Les crochets du Staphylocystis bilarius, se rapprochent aussi, pour le nombre et la forme, de ceux du Tænia undulata, qui est parasite du Geai (Corvus glandarius); mais leurs dimensions sont plus fortes de moitié.

(3) Sur une nouvelle forme de ver vésiculatre à bourgeonnement exogène (Compt. rend. de l’Acad. des sciences, t. 91, n° 23, p. 938-940).

ARTICLE N° 4.
dans un *Glomeris limbatus* recueilli à la Grande-Chartreuse (1). Je l’ai obtenue ensuite d’un *Glomeris limbatus* provenant des environs de Grenoble. Je ne puis, pour ce deuxième cas, préciser la localité, n’ayant pas eu la précaution de mettre à part les produits de chacune de mes chasses. Cela, du reste, importe peu.

Notre Urocyste est essentiellement caractérisé par son mode de prolifération ; le plus souvent, il ne se forme sur son blastogène qu’un seul bourgeon à la fois, et ce bourgeon se détache du blastogène dès qu’il est parvenu à maturité ; aussi est-il de règle que les bourgeons successifs de l’Urocyste ne constituent pas de colonies. Chaque individu (fig. 1) se compose, comme le Cercocyste du Ténébrion, de deux parties bien distinctes : 1° d’un *Cystenkörper*, représentant la tête, le corps et la vésicule caudale du Cystique ; 2° d’un *Cystenschwanz*, qui n’est autre chose que le blastogène. Mais il peut arriver accidentellement que plusieurs bourgeons se forment successivement et se développent simultanément sur le blastogène ; il se forme alors une colonie en série linéaire composée de deux ou trois bourgeons d’âge différent, et ordonnée de telle sorte que le bourgeon le moins développé se trouve en rapport immédiat avec le blastogène.

Chaque bourgeon (fig. 2) n’est d’abord constitué que par une petite vésicule sphérique contenant des éléments cellulaires en voie de prolifération. Cette vésicule est sessile et en continuité de tissus par son extrémité postérieure avec le blastogène ou le bourgeon qui la suit (fig. 3) ; mais en se développant elle prend une forme ovale et tend à s’isoler de plus en plus. Au moment où le bourgeon qui est en tête arrive à maturité (fig. 4), les deux individus ne sont plus reliés l’un à l’autre que par un étroit cordon. Ce stade, fort remarquable, ressemble d’une manière étonnante au processus de division de la vésicule caudale décrit et figuré par Moniez chez le *Cysti-

(1) Ce même Gloméris m’a fourni, indépendamment de l’*Urocystis prolifer*, au nombre de plus d’une centaine d’individus, deux *Monocercus Glomeridis* et plusieurs Nématoïdes, que je ferai connaître prochainement.
cercus pisiformis. Moniez ne voit dans ce phénomène qu'une élimination, le rejet d'une partie inutile, et il est très probable que ce n'est pas autre chose chez le Cysticercus pisiformis; mais je puis affirmer que, chez l'Urocystis prolifer, il s'agit bien réellement d'une multiplication de l'individu.

Le morcellement de la vésicule caudale des Cysticerques ne peut aucunement être assimilé au bourgeonnement de la vésicule caudale sur le blastogène des Urocystes. Les Cysticerques et les Urocystes appartiennent à deux types entièrement différents par le mode de formation de la vésicule caudale; et leur distinction, telle que je l'ai établie, ne saurait être mise en question, lors même qu'on viendrait à reconnaître que le processus de division décrit par Moniez, chez le Cysticercus pisiformis, représente aussi un mode de multiplication de l'individu. Ma classification repose sur les rapports génétiques de la vésicule caudale avec le Proscolex, rapports d'origine première qu'il faut se garder de confondre avec la prolifération d'une vésicule caudale préexistante. La partie de la vésicule caudale qui est rejetée chez le Cysticercus pisiformis n'est, à aucun point de vue, l'homologue du blastogène des Urocystes; elle ne peut être considérée que comme son analogue.

Lorsque l'Urocyste est parvenu à maturité, son pédicule se rompt et il devient libre (fig. 5). Il change alors de milieu: il abandonne la cavité du corps de son hôte, qui est son milieu normal pendant la phase du bourgeonnement, et passe dans le tissu adipeux, où il s'enkyste. Remarquons toutefois qu'il ne s'agit point là d'un véritable enkystement, car les tissus de l'hôte ne se modifient pas au contact du parasite pour lui fournir une enveloppe adventice.

Les caractères spécifiques de l'Urocystis prolifer peuvent être tirés de sa forme, de ses dimensions, de son mode d'invagination et de son armature céphalique.

La tête, c'est-à-dire la partie qui doit constituer tout le futur Scolex, est ovale, plus ou moins renflée latéralement, tronquée en avant et rétrécie en arrière; elle porte quatre ventouses et un rostellum fort long; ce dernier mérite d'être
décrit en détail. Il est, ainsi que le représente la figure 5, invaginé dans le fourreau du bulbe; il en résulte que la tête du ver se termine par une sorte d’infundibulum d’invagination ayant tout à fait l’aspect d’une ventouse frontale (fig. 6). La paroi interne de cet infundibulum présente de nombreux plis transversaux formés par le resserrement des fibres contractiles qui le constituent, et est armée d’une couronne simple de crochets si petits qu’il est impossible de les compter. Ce sont, en réalité, moins des crochets que de petits tubercules chitineux d’un jaune brillant (1). L’appareil vasculaire est représenté par un vaisseau annulaire qui entoure le bulbe et par deux canaux longitudinaux qui se prolongent jusque dans le cou en cotoyant les ventouses. Ces vaisseaux contiennent de fines granulations très réfringentes; le corps est relié par le cou à la tête proprement dite; il est constitué par une membrane très mince, si étroitement accolée à la paroi interne de la vésicule caudale qu’il est difficile de l’en distinguer, mais les gros corpuscules calcaires qu’il renferme suffisent pour déceler sa présence. Le pédoncule qui rattache le corps à la vésicule caudale ne s’aperçoit pas sans peine, en raison de la contractilité des tissus, de leur transparence et de l’étroitesse de l’orifice de l’invagination. La vésicule caudale est ovale, légèrement acuminée en avant, obtuse en arrière; sa contractilité, qui est très développée, permet à l’animal de se mouvoir dans tous les sens.

Les dimensions des diverses parties du ver sont les suivantes: crochets, 0\(\text{mm},001\); diamètre du rostellum à l’état d’invagination, 0\(\text{mm},030\); diamètre des ventouses, 0\(\text{mm},020\); longueur de la vésicule caudale, 0\(\text{mm},070\); largeur de la vésicule caudale, 0\(\text{mm},060\). On peut juger par ces mesures de la petitesse de l’Yurocystis prolifer et des difficultés que présente son étude. Sa taille ne dépasse pas celle d’un gros infusoire, et il est évident qu’il échapperait aux recherches de l’obser-

(1) Il faut, pour les distinguer, employer un grossissement de six à neuf cents fois; avec des grossissements inférieurs, on ne voit qu’un anneau chitineux.
vateur qui ne se servirait point de la loupe et du microscope.

Les métamorphoses ultérieures de ce nouveau Cystique me sont inconnues et n'ont probablement pas encore été observées ; mais on sait dès à présent que le Scolex, qui doit figurer en tête du Strobile, possède une longue trompe et une couronne simple de très petits crochets. Quant à l'hôte définitif, Mammifère ou Oiseau, il appartient certainement à la faune alpestre ; ce pourrait bien être la Musaraigne des Alpes (*Sorex alpinus*).

Genre CRYPTO CYSTE (*Cryptocystis*).

Les Cystiques pour lesquels je propose le nom générique de *Cryptocystis* sont, comme les Cercocystes, les Staphilocystes et les Urocystes, des Cysticercoides dont la vésicule caudale se forme aux dépens du blastogène par bourgeonnement exogène. Ils ressemblent tout particulièrement aux Urocystes par la simplicité relative de leur organisation et par ce caractère important qu'ils se séparent de leur blastogène dès qu'ils parviennent à maturité, mais ils ne sont pas prolifères comme les Urocystes.

Le seul et unique représentant de ce genre est le curieux Cystique découvert par Melnikoff (1) dans la cavité viscérale du *Trichodectes canis*.

Le développement du Cystique du Trichodecte a été très bien observé et interprété par Melnikoff. Le savant russe décrit et figure le Proscolex (hexacanthe non encore vésiculisé), puis le blastogène, portant à son extrémité postérieure les crochets du Proscolex et à son extrémité antérieure l'ébauche du Cystique. La vésicule caudale, le corps et la tête se différencient, et le Cystique entièrement développé se sépare du blastogène. Mais la vésicule caudale conserve à sa partie postérieure, comme preuve de ses connexions primitives avec le blastogène, les traces de la déchirure de son pédicule d'insertion.

(1) *Über die Jugendzustände der Tœnia cucumerina (Arch. für Naturg., 1869, Th. I, p. 62-70. Taf. III, fig. a, b, c).*

ARTICLE N° 4.
Ces données, fournies par l'étude du développement, sont des plus instructives; et elles devaient singulièrement faciliter la détermination des diverses parties constitutives du Cystique entièrement développé. Mais, il est de fait que les auteurs n'ont pas su les interpréter, car les homologies qu'ils indiquent sont de tout point inexactes.

Leuckart (1) et Moniez (2) comparent le Cystique du Trichodecte à une tête d'Échinocoque. C'est là une manière de voir qui ne peut se justifier à aucun point de vue. Nous savons ce que représente la tête d'une Échinocoque. Elle représente la partie antérieure du bourgeon somato-céphalique, c'est-à-dire une formation secondaire, qui est séparée de la vésicule caudale (vésicule mère) par le corps (vésicule proligère). Si donc nous voulons assimiler les parasites du Trichodecte à une tête d'Échinocoque, il faut admettre nécessairement que c'est un Cystique dépourvu de corps proprement dit et de vésicule caudale. Or, tout ce qu'on a pu observer de sa structure et de son mode de développement proteste contre cette conclusion. La partie qui bourgeonne sur le Proscolex (hexacanthe des auteurs) ne peut représenter la partie postérieure d'un Scolex, le cou d'un Strobile, ce doit être une vésicule caudale; et celle-ci ne peut être en rapport direct avec l'appareil de fixation du Scolex, elle doit en être séparée par le corps du Cystique. La figure que Leuckart donne du Cystique du Trichodecte proteste elle-même contre son interprétation. L'épaisse cuticule qui recouvre la partie postérieure du Scolex (Sack, Aussenkörper) représente, en réalité, la vésicule caudale et le corps du Cystique étroitement accolés et réduits à l'état d'une simple membrane. Il est vrai que, chez le Cystique du Trichodecte, de même que chez l'Échinocoque, il existe un cou très développé, dans lequel la tête proprement dite s'invagine;

(1) «Unser Cysticercoïd verhielt sich genau, wie ein Echinoccocusköpfchen mit zurückgezogenem Scheitel» (Die Parasiten des Menschen, Bd. I, p. 848).
(2) «Le parasite du Trichodecte est tout à fait comparable à un Scolex d'Échinocoque dont la tête est rétractée.» (Essai monographique sur les Cysticerques, p. 107).
mais le Cystique du Trichodecte n’a pas, comme l’Échinocoque, sa trompe invaginée dans le bulbe, et ses crochets ne sont pas renversés. Les analogies qui rapprochent le Cystique du Trichodecte de l’Échinocoque n’ont qu’une importance tout à fait secondaire, et ne peuvent être mises en parallèle avec les différences fondamentales qui rattachent ces deux formes à deux groupes primordiaux bien distincts.

RÉSUMÉ ET CONCLUSION.

Deux faits importants ressortent de notre étude des Cystiques des Ténias.

Le premier de ces faits est relatif au mode de formation de la tête, qui est identique chez toutes les espèces, tous les genres et tous les types. La véritable tête, le futur Scolex, ne procède jamais directement de la vésicule caudale ; elle en est toujours séparée par une partie intermédiaire, que nous avons désignée sous le nom de « corps » et qui lui sert d’enveloppe immédiate. Cette identité fondamentale de structure et de développement comporte sans doute des modifications de détail ; mais les caractères différentiels que l’on peut tirer de ces modifications n’ont qu’une valeur secondaire et ne peuvent fournir la base d’une classification naturelle des Cystiques des Ténias. Ce sont cependant les seuls caractères dont on ait fait usage jusqu’à ce jour ; et c’est précisément ce qui rend inacceptables les diverses classifications proposées jusqu’ici.

L’autre fait qui ressort de nos observations, et sur lequel nous croyons devoir insister tout particulièrement, est relatif au mode de formation de la vésicule caudale. Contrairement à la manière de voir généralement admise aujourd’hui, la vési-
Cystiques des Ténias.

cule caudale des Cystiques des Ténias peut se former de plusieurs manières bien différentes; et ces divers modes de formation ont pour la morphologie de ces larves des conséquences dont il importe de tenir compte. C'est pour avoir méconnu ces différenciations, que la détermination des diverses parties constitutantes des Cystiques des Ténias est encore aujourd'hui si embrouillée. De quelque manière qu'elle se forme, la vésicule caudale est une partie qui se distingue toujours facilement, par sa structure propre et ses connexions, soit du corps du Cystique, soit du blastogène.

Nous avons montré dans le présent travail quel usage on pouvait faire de ces distinctions, non seulement pour la détermination des parties de l'individu, mais encore pour la classification des genres et des espèces. Les Cystiques des Ténias actuellement connus se répartissent naturellement en deux grands groupes : celui des Cystiques proprement dits et celui des Cysticercoïdes. Le groupe des Cysticercoïdes, objet principal de nos recherches, a été divisé en deux sous-types et subdivisé en six genres entièrement nouveaux. Mais les caractères fournis par les divers modes de formation de la vésicule caudale sont encore susceptibles d'un autre emploi. Ils nous serviront de guide, ainsi qu'on va le voir, pour coordonner les divers groupes que nous avons établis.

Les espèces que nous plaçons au bas de l'échelle des différenciations organiques et que nous considérons, par cela même, comme les plus anciennes et les plus voisines du type primitif, appartiennent aux genres Cryptocyste et Urocyste. Or, c'est précisément chez les Cryptocystes et les Urocystes que nous observons le plus d'indépendance entre les divers stades du développement. Chez eux, en effet, les trois phases représentées par le Proscolex, le Cystique et le Scolex sont parfaitement distinctes. Leur Proscolex, après avoir bourgeonné la vésicule caudale, se sépare de cette dernière dès que le Cystique est parvenu à maturité. Il n'y a, par conséquent, entre le Proscolex et le Cystique qu'un simple rapport génétique, aucune partie du Proscolex ne subsistant dans le Cystique.
parfait. Il n’en est pas de même pour les autres Cysticercoïdes appartenant à notre deuxième section. Chez les Staphylocystes et les Cercocystes, la vésicule caudale reste adhérente au blastogène ; mais celui-ci ne joue dans la morphologie du Cystique qu’un rôle tout à fait accessoire, celui d’un support ou d’un simple appendice. Il n’en est plus ainsi chez les Cysticercoïdes de notre première section. Les Monocerques et les Poly-cerques possèdent aussi un blastogène persistant, mais cette partie de leur organisation joue chez eux un rôle plus important, c’est une véritable enveloppe. En passant du groupe des Cysticercoïdes à celui des Cystiques proprement dits nous faisons un pas de plus dans l’échelle des différenciations organiques, et en même temps nous constatons une abréviation fort remarquable du développement. Ici le stade représenté par le bourgeonnement de la vésicule caudale se trouve entièrement supprimé. Le Proscolex des Échinocoques, des Cœnures et des Cysticerques passe directement au Cystique, et constitue même l’une de ses parties essentielles.

La coordination sériale des Cystiques des Ténias peut être exprimée par une loi fort simple, qui est la suivante : les types dont l’organisation est le plus différenciée sont ceux dont le développement se trouve le plus condensé ; les types d’une organisation relativement inférieure sont ceux dont le développement se trouve le plus dilaté. En d’autres termes, la complication du développement et celle de l’organisation sont toujours en raison inverse.

EXPLICATION DES FIGURES

Planche 12.

Fig. 1. *Urocystis prolifer.* Individu isolé. Bourgeon entièrement développé, mais encore adhéré au blastogène. Grossissement : 650.

Fig. 2. *Urocystis prolifer.* Colonie. Un bourgeon presque entièrement développé, deux bourgeons moins avancés et le blastogène. Grossissement : 650.

Fig. 3. *Urocystis prolifer.* Colonie. Deux bourgeois en voie de développement. Le second, c’est-à-dire celui qui adhère au blastogène, n’est encore représenté que par la vésicule caudale. Grossissement : 430.

ARTICLÉ 4.
Fig. 4. Urocystis prolifer. Colonie. Deux bourgeons reliés par un funicule. Celui qui est en tête est presque entièrement développé; l'autre est en voie de formation. Grossissement : 430.

Fig. 5. Urocystis prolifer. Cystique entièrement développé et séparé du blastogène. Grossissement : 900.

Fig. 6. Urocystis prolifer. Infundibulum formé par l'invagination de la trompe dans le fourreau du bulbe, vu de face. Grossissement : 900.

Fig. 7. Monocercus glomeridis. Le Cystique est enveloppé de son blastogène. On remarque à la surface de ce dernier des plis plus ou moins réguliers, qui ont été pris par les auteurs pour les zones concentriques d'une cuticule. Grossissement : 30.

Fig. 8. Monocercus glomeridis. Coupe optique montrant le blastogène, la vésicule caudale, le corps et la tête à l'état d'invagination. Grossissement : 70.

Fig. 9. Monocercus glomeridis. Le bulbe muni de sa double couronne de crochets. Grossissement : 300.

Fig. 10. Monocercus glomeridis. Crochets isolés. Grossissement : 650.

Fig. 11. Monocercus arionis. Crochets isolés. Cette figure, exécutée avec le même grossissement que la précédente, est destinée à montrer les caractères qui séparent les deux espèces.

Fig. 12. Monocercus glomeridis. Lambeau de la vésicule caudale. Structure intime. Fort grossissement.

Fig. 13. Monocercus glomeridis. Lambeau du blastogène. Structure intime. Fort grossissement.
Le procédé opératoire de la Sangsue comprend : 1° la fixation; 2° la morsure; 3° la succion; 4° la déglutition.

1° Fixation. — Sans aucun doute, la théorie qui a régné jusqu'à ce jour, sur ce sujet, a été uniquement l'œuvre du raisonnement.

A ne considérer que la forme en cupule de la ventouse, on a dû se dire : « Pour qu'une semblable surface puisse contracter adhérence avec un plan, il faut que le fond de la ventouse fasse d'abord saillie, se fixe et qu'ensuite le reste de cet organe se rabatte de dedans en dehors, afin d'expulser la plus petite bulle d'air qui pourrait rester entre les deux surfaces. »

Telle était, en effet, l'opinion générale, devenue classique, sur le mode de fixation des ventouses de la Sangsue. C'est certainement avec cette idée préconçue qu'on a examiné, comme on l'a fait, à travers une lame de verre, le moment même de la fixation. Or ce phénomène se passe avec une telle rapidité, qu'il est impossible de le suivre et que l'on croit naturellement avoir sous les yeux la reproduction fidèle du mécanisme que l'on a imaginé.

Cependant, si les observateurs avaient attendu que la Sangsue eût perdu un peu de la viscosité qui recouvre ses ventouses, ils auraient vu, au travers de la lame transparente, qu'une ou plusieurs bulles d'air restaient au centre de ces organes après leur fixation, ce qui assurément ne pourrait avoir lieu si le milieu se fixait avant les bords.

Nous avons employé la méthode graphique pour étudier la question à notre tour. En faisant progresser une Sangsue sur une feuille de papier préalablement recouverte d'une couche de noir de fumée, nous avons vu l'animal laisser, de son passage, des traces que nous avons analysées.

Les traces de la ventouse postérieure sont de deux sortes. Les unes sont des anneaux blancs à centre noir que l'on obtient en détachant la Sangsue au moment même où elle vient...
de se fixer; les autres sont des cercles entièrement blancs que laisse sur le papier la Sangsue qui se détache naturellement. Ces deux tracés prouvent surabondamment que la fixation de

la ventouse postérieure se fait d'abord par le contact de la périphérie qui dessine la circonférence blanche, ensuite par l'abaissement du fond qui vient adhérer au papier et fait disparaître la tache noire du centre.

La fixation de la ventouse antérieure se fait d'une façon beaucoup plus compliquée et moins rapide.

Dans un premier temps, la Sangsue commence à explorer le lieu où elle va se fixer, avec les deux bords de la lèvre supérieure qui s'impriment en blanc sur le papier noirci, de façon à figurer deux lignes convergentes.

Dans un deuxième temps, la partie antérieure de la lèvre supérieure s'abaisse à son tour et l'on voit alors se dessiner un angle formé par la réunion des deux lignes précédentes.

Dans un troisième temps, la lèvre inférieure vient toucher le papier et, cette fois, la figure produite est triangulaire.

Dans un quatrième temps, le pharynx, jusqu'alors immobile, commence à s'abaisser et le contour triangulaire de la ventouse prend, sur son passage, la forme circulaire. On ob-

Fig. 1. Tracés de la ventouse postérieure de la Sangsue.

Fig. 2. Tracés de la ventouse antérieure de la Sangsue.
serve à ce moment, sur le papier, un cercle blanc dont le centre est resté noir, ce qui prouve que le fond de la ventouse n'a pas encore touché la surface enfumée.

Dans un cinquième et dernier temps, l'adhérence devient complète et se décelè par le tracé d'un cercle entièrement blanc.

Ainsi, la Sangsue ne fixe pas d'abord le centre de sa ventouse, comme on l'admettait jusqu'à présent, sans preuves suffisantes. En opérant de la sorte, elle arriverait à se fixer d'une manière très rationnelle, mais l'expérimentation démontre que le mécanisme de la fixation est tout l'opposé de ce que l'on supposait, puisque ce sont les bords de la ventouse qui commencent à se fixer, tandis que le centre ne vient adhérer qu'en dernier lieu.

2° Morsure. — Aussitôt après la fixation de la ventouse antérieure, la région voisine se redresse, de façon à simuler un sabot de cheval. Si l'on souleve alors, au moyen d'un petit crochet, un point du pourtour de la ventouse, on voit que son fond s'est relevé sans toutefois qu'elle ait repris sa forme primitive. Un mamelon de peau a suivi ce léger mouvement de retrait, mais il n'a subi encore aucune atteinte. Cette phase préliminaire de la morsure n'a aucun rapport avec la fixation, car, si l'on fait progresser une Sangsue sur une feuille de papier très mince, on n'aperçoit jamais, par-dessous, de dépression correspondant à la fixation des ventouses.

On sait que trois mâchoires égales, l'une antérieure, les deux autres latérales, munies chacune d'un grand nombre de denticles, constituent les armes de la Sangsue. Ces mâchoires ont une base musculaire qui devient rigide quand elles entrent en action. A cet instant, des mouvements se produisent dans la région pharyngienne : ce sont les muscles des mâchoires qui se contractent et se relâchent avec un synchronisme parfait. Nous avons pu enregistrer ces mouvements au moyen d'un levier long et léger qui, placé sur la région pharyngienne, traçait ses indications sur la feuille enfumée d'un cylindre tournant; ils se succèdent, sans repos intermédiaire, à raison de deux par seconde.

Pour étudier la façon dont s'effectue la morsure, nous avons appliqué des Sangsues sur la peau rasée d'un Lapin maintenu par un appareil contentif.

Si l'on détache une Sangsue sur laquelle les mouvements du pharynx viennent de donner le signal de l'action des mâchoires,
on trouve sur la peau trois incisions linéaires dont chacune correspond à une mâchoire. Il y a donc une incision antérieure et deux incisions postérieures disposées comme les médianes d'un triangle équilatéral, avec cette différence toutefois que ces trois lignes ne se prolongent pas jusqu'à leur point de rencontre.

Si l'on détache une Sangsue un peu plus avancée dans son travail mécanique, on trouve, au lieu des trois incisions linéaires, trois déchirures figurant ensemble un trèfle dont les trois folioles ne se rencontrent encore pas au centre.

Ce n'est qu'un peu plus tard que les trois folioles du trèfle se réuniront pour former, par le retrait des lambeaux de la peau, une blessure triangulaire.

La Sangsue, pour mordre, agit donc à plusieurs reprises. En soulevant légèrement l'un des bords de la ventouse d'une Sangsue en train de mordre, on peut s'assurer que les mâchoires s'écartent l'une de l'autre, en même temps qu'elles s'enfoncent dans la peau, tandis qu'au contraire elles se rapprochent et reviennent sur elles-mêmes en se relevant.

Que l'on imagine un scarificateur triangulaire portant une lame à chacun de ses sommets; si ces trois lames s'écartent l'une de l'autre, en même temps qu'elles s'enfoncent dans la peau, elles reproduiront exactement le mécanisme de la morsure de la Sangsue.

3° Succion. — Pour comprendre comment elle s'opère, examinons, sur une Sangsue morte, quelle est la situation des mâchoires : elles sont repliées à l'entrée de l'œsophage, dont elles obturent l'orifice à la façon d'un bouchon. Quand, au lieu d'être au repos, les mâchoires entrent en action, nous savons déjà qu'elles s'abaissent en s'écartant l'une de l'autre. Si, sur la Sangsue morte, on produit cet effet facile à réaliser, on voit qu'en même temps on dilate l'œsophage, dont l'orifice prend aussitôt la forme d'un triangle où chaque côté correspond à la base d'une mâchoire, l'œsophage devenant lui-même un en-tonnoir triangulaire. Sur la Sangsue en train de mordre, le même effet se produit et, quand la morsure est accomplie, le sang s'élance pour remplir le vide de l'œsophage béant. C'est ainsi que s'accomplit la succion.

4° Déglutition. — Voyons maintenant comment le sang qui a été sucré est ensuite avalé ou, en d'autres termes, comment s'effectue la déglutition.

Si, sur une Sangsue en train de se gorger, on tranché, d'un
coup de ciseaux, la région œsophagienne, on sait que, presque toujours, le tronçon antérieur reste fixé à la peau et continue à sucer.

En examinant la section, nous verrons que l’écoulement de sang est intermittent et non continu. D’un autre côté, le tronçon de l’œsophage ne reste pas immobile au milieu de la section : il monte et descend tour à tour, entraîné par les mouvements des mâchoires. Or l’écoulement du sang coïncide précisément avec la remonte des mâchoires, ce qui indique clairement que le bouchon formé par la réunion de celles-ci agit à la façon d’un piston qui pousse le sang dans l’œsophage. Et cela est tellement vrai, que, si la section est faite assez près de la ventouse, on assiste à la manœuvre de ce piston.

Théorie du procédé opératoire de la Sangsue. — 1° Pour faire une saignée, la Sangsue commence par fixer sur la peau les bords, puis le fond de sa ventouse antérieure, de façon à amener une adhérence complète (fixation);

2° Après s’être ainsi étalée, la ventouse se relève un peu et entraîne à sa suite un mamelon de peau sur lequel, par une série de mouvements rapides et simultanés, les trois mâchoires produisent bientôt une blessure triangulaire (morsure);

3° En même temps que les mâchoires s’enfoncent dans cette blessure, elles s’écartent et leur divergence amène la dilatation de l’œsophage, qui prend la forme d’un entonnoir à base triangulaire, dans le vide duquel le sang s’élance (sucction);

4° Après s’être abaissées et écartées, les mâchoires se relèvent et se rejoignent pour lancer derrière elles, à la façon d’un piston, le sang dans la direction de l’estomac (déglutition).
Nous exposeron, dans ce mémoire, les résultats de quelques expériences sur le mécanisme de la respiration chez les Chéloniens, un des sujets les plus obscurs et les plus controversés de la Physiologie. On sait que jusqu'à une époque récente, l'impossibilité apparente d'expliquer par une dilatation active de la cavité viscérale la pénétration de l'air dans les poumons de ces animaux avait fait accepter par la plupart des naturalistes la théorie de la « déglutition de l'air », introduite dans la science, en 1719, par l'illustre Malpighi.

Malgré les recherches publiées, à la fin du siècle dernier, par Townson, et les expériences péremptoires de Panizza, faites en 1842, de Weir Mitchell et Morehouse, en 1861, cette erreur est restée classique, jusqu'à l'époque où M. Paul Bert, dans ses leçons au Muséum (2), fixa définitivement la véritable nature des mouvements respiratoires chez les Tortues : expérimentant par la méthode graphique, l'éminent professeur fit connaître le singulier rythme respiratoire propre aux animaux de cet ordre et montra que la boîte osseuse rigide dont ils sont entourés, ne les empêche pas de respirer, ainsi que l'admettaient les auteurs précités, par une dilatation active de leur cavité viscérale.

Il est donc aujourd'hui bien démontré que les Tortues ne respirent pas, comme les Grenouilles, en avalant de l'air, mais

(1) Ce travail a été fait au laboratoire de zoologie de la Faculté de Lyon, d'après les indications de M. le professeur Sicard.

bien en inspirant et expirant, comme les autres Vertébrés aériens. Aussi n'est-ce point en vue de fournir de nouveaux arguments à l'appui de cette doctrine que nous avons expéri-
menté : nos recherches ont pour but exclusif la connaissance et la démonstration des agents respiratoires spéciaux qui inter-
vienient dans les phénomènes mécaniques de la respiration.

Lorsqu'on étudie la constitution anatomique d'une Tortue, surtout d'une espèce terrestre, on ne peut s'empêcher d'être frappé du faible développement et de l'insuffisance apparente des muscles auxquels les physiologistes, adoptant l'opinion de Townson, de Mitchell et Morehouse, attribuent le rôle de puissances respiratoires. Ces muscles, dont il est nécessaire de rappeler brièvement la disposition, sont de deux ordres : les uns représentent des inspirateurs, les autres des expirateurs. Dans les espèces aquatiques, telles que la *Cistudo Europaea*, sujet de la Monographie anatomique de Bojanus, ou la *Chelydra serpentina*, étudiée par Weir Mitchell, les muscles expira-
teurs consistent en deux ventres musculaires, terminant en avan et en arrière la membrane aponevrotique qui recouvre inférieurement les viscères. La lame musculaire antérieure, muscle *diaphragmaticus* de Bojanus, s'insère à la carapace suivant une ligne courbe dirigée en arrière et en dehors, au niveau de la troisième et de la quatrième côte; la lame posté-
rieure, *transversus abdominis*, naît de l'iléon, de la huitième vertèbre et de la carapace jusqu'à la sixième côte. Par leur contraction, ces deux muscles tendent fortement la membrane fibreuse qui leur sert de tendon commun ; ils compriment ainsi la masse viscérale qui transmet la pression aux poumons, fixés à la paroi dorsale de la carapace.

Le muscle inspirateur, *obliquus abdominis*, est situé en arrière, dans l'échancrure limitée par la carapace et le plas-
tron ; ses fibres naissent des bords de cette échancrure, et sa face postérieure ou externe, concave, reçoit les membres lors-
qu'ils se rétractent, tandis que sa face antérieure ou interne, convexe, faisant saillie dans la cavité abdominale, est en rap-
port avec le muscle transverse ou expirateur, auquel elle

ARTICLE n° 6.
adhere par une couche de tissu conjonctif. Les deux muscles postérieurs, ainsi adossés par leurs convexités, et se contractant alternativement, ont donc évidemment des actions antagonistes. De plus, chacun de ces muscles, quand il se raccourcit, entraîne l’autre, en allonge les fibres au maximum, et le met ainsi dans la condition la plus favorable à son fonctionnement, lorsque, à son tour, il entrera en contraction.

Nous avons essayé d’exprimer par une figure schématique les dispositions essentielles de ces muscles, dont les fonctions, absolument inverses, sont cependant liées par une mutuelle dépendance (fig. 1).

L’appareil musculaire ainsi constitué est bien développé et susceptible d’une action énergique chez la plupart des Chéloniens aquatiques ; mais il en est tout autrement dans les espèces terrestres, la Testudo greca, par exemple. Ici, non seulement les deux muscles postérieurs présentent une diminution très notable en épaisseur et en étendue, mais le muscle diaphragme fait entièrement défaut, l’aponévrose ou sac viscéral ne présentant à sa partie antérieure aucunes traces de fibres contractiles.

On sait que l’étendue de la contraction d’un muscle est en raison directe de la longueur de ses fibres, et que l’énergie de cette contraction est proportionnelle au nombre des fibres ou à la section du muscle. En se fondant sur ce principe élémentaire de physiologie, on pourrait donc croire que la respiration, au moins chez les Tortues terrestres, doit être très faible, soit au point de vue des volumes d’air déplacés, soit en ce qui concerne les pressions que ces animaux peuvent produire dans leur appareil pulmonaire : les muscles respiratoires sont en effet constitués par des fibres à la fois courtes et peu nombreuses. L’expérience directe, loin de justifier cette induction, montre au contraire que les Chéloniens font circuler dans leurs poumons, très vastes, comme on le sait, de grandes masses d’air à chaque mouvement respiratoire, et que, d’autre part,
ils peuvent, aux deux temps de la respiration, développer des pressions considérables.

Nous avons fait une série de mesures, dans le but de connaître exactement les volumes d'air inspirés et expirés, ainsi que les pressions maxima développées dans l'appareil respiratoire. Une Tortue grecque, de taille moyenne, est coiffée d'une muselière en caoutchouc, hermétiquement close, et communiquant par un tube avec un manomètre à mercure : les plus grands écarts de la colonne mercurielle, sont, pour l'expiration, 25 millimètres, pour l'inspiration, 15 millimètres ; constamment cette dernière s'est montrée inférieure à l'expiration, sous le rapport de la pression développée, conformément d'ailleurs à ce qui se passe chez les Vertébrés supérieurs.

Quant au volume d'air mis en circulation dans les poumons, nous n'avons fait que répéter, pour en obtenir la mesure, une expérience déjà faite par M. le professeur Sabatier sur la Testudo mauritanica et nous avons obtenu un résultat analogue, en tenant compte des différences de taille que présentent les espèces étudiées. Le tube de caoutchouc qui prolonge la muselière est mis en communication avec l'intérieur d'une éprouvette graduée, renversée sur la cuve à eau et contenant de l'air : les changements de niveau qu'éprouve la colonne liquide à l'intérieur de l'éprouvette donnent la mesure des volumes d'air respirés. Ces différences de niveau sont, en moyenne, de 12 centimètres cubes dans l'espèce observée par nous, et peuvent atteindre 20 à 22 dans les respirations très profondes.

En comparant ces chiffres à la capacité de la cavité thoraco-abdominale directement mesurée après ablation des organes, on arrive à ce résultat étonnant que les Chéloniens possèdent une capacité respiratoire à peu près double de celle de l'homme, pour les respirations ordinaires.

Les pressions et les déplacements d'air constatés dans les expériences précédentes, exigent évidemment l'intervention d'agents plus puissants que les muscles dont nous avons rappelé les dispositions principales. Quels peuvent être ces agents?
Cette question a reçu une réponse, de la part de M. le professeur Sabatier, qui, dans un très intéressant mémoire (1), indique, en se fondant sur la seule inspection anatomique, les ceintures thoracique et pelvienne comme jouant un rôle important dans le mécanisme qui nous occupe. Voici de quelle manière, suivant M. Sabatier, doit être envisagé le mécanisme respiratoire chez les Chéloniens: il y a d'autres muscles inspirateurs que l'oblique de l'abdomen, et d'autres muscles expirateurs que le transverse et le diaphragmaticus de Bojanus: ce sont les muscles moteurs des ceintures thoracique et pelvienne, constituant en quelque sorte un appareil moteur complémentaire, dont le rôle est très important. La ceinture antérieure, comprenant de chaque côté le scapulum, le coracoïde et le procoracoïde, et la ceinture postérieure constituée par l'iléon, le pubis et l'ischion, forment deux anneaux osseux, limitant en avant et en arrière la cavité viscérale et suspendus à l'intérieur de la boîte osseuse; des ligaments assez lâches relient le scapulum d'une part, et l'iléon de l'autre, à la colonne vertébrale. Autour de ces articulations très mobiles, les deux ceintures peuvent osciller assez librement, par le jeu de leurs muscles, et effectuer des mouvements de convergence et de divergence de leurs extrémités inférieures, réunies en symphyse sur la ligne médiane et libres de toute attache au plastron. Quand les deux ceintures se meuvent en convergent, elles compriment la masse viscérale, foie, intestins, organes de la reproduction, et par leur intermédiaire, les poumons; quand elles s'écartent, la pression diminue dans la masse viscérale, et, par effet indirect, dans l'appareil respiratoire.

Dans le premier cas, il y a refoulement d'air ou expiration: dans le second cas, appel d'air ou inspiration. De plus, la ceinture thoracique, plus libre dans ses attaches à la colonne vertébrale, et mue par des muscles plus puissants, aurait une influence plus marquée et jouerait un rôle prépondérant.

(1) A. Sabatier, Du mécanisme de la respiration chez les Chéloniens (Revue des sc. nat., Montpellier, 15 mars 1881).
Quant aux muscles moteurs des ceintures, indiqués avec soin par M. Sabatier, nous nous réservons de les examiner en détail à l'occasion de nos propres expériences.

Cette théorie que nous avons cherché à résumer brièvement est restée, croyons-nous, jusqu'à ce jour dépourvue de preuve expérimentale; elle repose entièrement sur des faits anatomiques, et, sous la réserve d'une démonstration directe, elle répond ingénieusement à cette question si embarrassante pour le physiologiste: concilier l'étendue et la vigueur des mouvements respiratoires avec la faiblesse et l'état parfois rudimentaire des muscles spécialement dévolus à cette fonction.

Cette théorie que nous avons cherché à résumer brièvement est restée, croyons-nous, jusqu'à ce jour dépourvue de preuve expérimentale; elle repose entièrement sur des faits anatomiques, et, sous la réserve d'une démonstration directe, elle répond ingénieusement à cette question si embarrassante pour le physiologiste: concilier l'étendue et la vigueur des mouvements respiratoires avec la faiblesse et l'état parfois rudimentaire des muscles spécialement dévolus à cette fonction.

L'étude à la fois anatomique et physiologique que nous avons faite à ce sujet, d'après le conseil de M. le professeur Sicard, nous a conduit à vérifier, d'une manière générale, l'explication donnée par M. Sabatier: nos expériences nous ont montré que les ceintures concourent, pour une large part, au renouvellement de l'air dans les poumons. Mais, pour la ceinture thoracique, nous avons trouvé que les mouvements s'effectuent suivant un mode très différent de celui qu'indique le professeur de Montpellier, bien que le résultat général soit le même. En outre ces recherches nous ont révélé une différence remarquable de mécanisme respiratoire chez les Tortues terrestres et les Tortues aquatiques. Cette différence que l'anatomie seule pouvait faire prévoir, ressort clairement des expériences comparatives.

Nous avons choisi comme sujets d'expériences deux espèces prises dans des familles distinctes: la Tortue grecque, espèce terrestre, et la Cistude d'Europe, à la fois terrestre et aquatique. Nous exposerons d'abord les résultats que nous avons donnés la première.

L'inscription graphique simultanée de la respiration, par les narines, et des déplacements des ceintures osseuses, nous a paru le procédé le plus sûr pour juger du rapport qui peut exister entre les deux sortes de mouvements. Tout mouvement respiratoire est-il accompagné d'un mouvement correspondant des ceintures et, s'il existe sous ce rapport une relation con-
RESPIRATION CHEZ LES CHÉLONIENS.

stante, quels sont le sens et le mode du déplacement de chaque ceinture? Telle est la question qui se pose tout d'abord.

Occupons-nous en premier lieu de la ceinture pelvienne. On sait que chez les Chéloniens, les deux ischions aussi bien que les pubis sont réunis sur la ligne médiane, en une symphyse très étendue qui n'est attachée au plastron par aucun ligament. Les extrémités des ischions, ainsi unis entre eux, dépassent par une forte saillie les deux pubis et ne sont séparées du plastron que par une mince couche de tissu cellulaire, propre à faciliter le glissement, et jouant sans doute le rôle de bourse séreuse. A ce niveau, c'est-à-dire vers la partie postérieure des xipho-plastrons, nous enlevons au moyen d'un trépan une rondelle osseuse et nous constatons immédiatement les mouvements oscillatoires, tantôt en avant, tantôt en arrière, de la symphyse pubienne. De ces mouvements, les uns coïncident avec des déplacements des membres postérieurs, les autres, très étendus, ont lieu à des intervalles réguliers, l'animal étant parfaitement calme. Un levier inscripteur armé d'une pointe acérée et long de 10 centimètres est enfoncé dans la symphyse; il porte à son extrémité une plume d'acier, dont la pointe repose sur le cylindre enflammé d'un appareil enregistreur. C'est, comme on le voit, la ceinture pelvienne elle-même, prolongée extérieurement en un long style, qui inscrit ses déplacements sur le cylindre. En même temps, le museau de l'animal est coiffé d'une muselière mise en communication avec un tambour de Marey, inscrivant les mouvements respiratoires. Nous avons soin d'orienter les leviers de telle sorte que leurs déplacements soient de même sens aux deux temps de la respiration: toujours les parties descendantes des deux courbes répondent à l'inspiration, les parties ascendantes à l'expiration; les lignes horizontales indiquent les pauses. Celles-ci, comme l'a fait voir M. Paul Bert, surviennent chez les Tortues terrestres, pendant l'expiration même et partagent cette phase en deux moitiés à peu près égales.

Dans ces conditions, nous obtenons deux courbes parallèles dont la figure 2 fournit un exemple. En recueillant par ce pro-
cédé une longue série de tracés, on déduit immédiatement de leur analyse les deux faits suivants :

1° La symphyse ischio-pubienne exécute des mouvements suivant un arc de cercle antéro-postérieur dont la longueur,

déduite du rapport des rayons, est d'environ 1 centimètre. Ces mouvements, l'animal étant calme, coïncident avec ceux de la respiration ;

2° Tout mouvement respiratoire, même très faible, s'accompagne d'un déplacement de la ceinture pelvienne. Jamais, dans nos nombreuses expériences, nous n'avons vu la respiration s'accomplir en dehors de cette condition ;

3° Pour chaque respiration complète, la ceinture pelvienne se porte en avant pendant la première demi-expiration, puis revient aussitôt en arrière pendant toute la durée de l'inspiration, enfin se porte de nouveau en avant pendant la seconde demi-expiration. Elle reste immobile pendant toute la durée de la pause. La trace qu'elle laisse sur le cylindre est ainsi de même forme générale que la courbe respiratoire.

En examinant avec attention les tracés, et en ayant soin de marquer des repères, on voit que les divers éléments des deux courbes se correspondent à peu près exactement, maxima et minima se trouvant sur la même ligne verticale. Cette coïnci-
dence est même parfaite pour les minima inspiratoires. Mais il est à noter que, d'une manière constante, au début de chaque mouvement respiratoire, un léger retard se manifeste dans la courbe de la respiration (comparez les points marqués 1 dans la figure). Cette particularité indique qu'au début de la compression exercée sur la masse viscérale par la ceinture pelvienne, l'effet produit est trop faible pour se faire sentir dans l'appareil pulmonaire. Nous insisterons plus loin sur ce détail important.

Tandis que la ceinture postérieure effectue les mouvements indiqués, la ceinture antérieure ne reste pas immobile ; elle présente, elle aussi, des déplacements étendus, en rapport intime avec la respiration. On constate aisément le fait en découvrant le coracoïde, d'un seul côté, au moyen d'une couronne de trépan pratiquée vers le milieu de l'hypoplastron. Mais ici les choses ne se passent pas d'une manière aussi simple, et le déplacement ne consiste pas seulement, ainsi que l'indique M. Sabatier, en une oscillation de l'ensemble de la ceinture autour de ses articulations vertébrales. Ce point particulier du mécanisme respiratoire a été pour nous l'objet d'un examen attentif, et cet examen nous a conduit à des résultats nouveaux et dignes d'intérêt. Il est nécessaire, pour bien saisir ce mécanisme spécial, de jeter un coup d'œil sur la structure et les connexions de la ceinture thoracique. Chaque moitié de l'anneau osseux constitué par les scapulum et les procoracoïdes, s'articule en haut à la huitième vertèbre cervicale, par des ligaments lâches, permettant des mouvements étendus; mais, tandis que la ceinture pelvienne est libre inférieurement, nous trouvons ici les procoracoïdes reliés, chacun de son côté, au plastron, par un ligament très développé (fig. 3, pl. 13). Ce ligament, en forme d'éventail, s'insère par son sommet à l'extrémité du procoracoïde, et par sa base à la partie médiane de l'entoplastron, sur une petite crête osseuse ; ses deux bords antérieur et postérieur présentent un renforcement notable. Les deux ligaments sont en contact par leurs extrémités postérieures, et, s'écartant en avant, laissent entre eux un petit
espace triangulaire. Quant aux os coracoïdes, ils sont libres de toute connexion avec le plastron.

On comprend aisément qu'une telle disposition rende impossible tout mouvement de bascule de l'ensemble de la ceinture autour de ses articulations vertébrales; et, de fait, on constate à chaque inspiration que le coracoïde mis à découvert se meut, non dans le sens antéro-postérieur, mais en décrivant un arc de cercle de dedans en dehors. Chaque demi-ceinture thoracique tourne autour d'un axe fictif, à peu près vertical, passant par ses deux articulations à la colonne vertébrale et au plastron. Il est bon d'ajouter, pour être tout à fait exact, qu'il se produit en même temps un léger écartement des deux moitiés de l'anneau osseux grâce à la laxité des ligaments; mais ce mouvement est tout à fait secondaire.

L'inscription graphique des mouvements de la ceinture thoracique est loin d'être facile; nous avons pu cependant, après plusieurs essais, obtenir des tracés démontrant le synchronisme de ces mouvements et de la respiration (fig. 4). Le levier inscripteur est enfoncé dans le coracoïde, à travers la couche musculaire (muscle obturateur externe de l'épaule) qui recouvre cet os; il traverse une bande de caoutchouc placée transversalement en manière de pont au-dessus de la couronne de trépan, et qui lui fournit un point fixe. Les tracés obtenus sont analogues à ceux de la ceinture pelvienne et démontrent les mêmes faits. On voit donc, en rapprochant les deux séries d'expériences, que les mouvements respiratoires sont accompagnés régulièrement par des mouvements synchrones des deux ceintures.

Le léger retard du tracé respiratoire (fig. 2, A) sur le tracé de la ceinture s'accuse nettement ici: c'est un caractère constant et important de tous nos graphiques. Il permet d'affirmer que les déplacements des leviers osseux ne sont pas un effet passif et secondaire des mouvements respiratoires produits par d'autres agents, mais sont bien une des causes actives de ces mouvements.

Les muscles qui impriment aux ceintures les mouvements

* ARTICLE N° 6.*
RESPIRATION CHEZ LES CHÉLONIENS.

indiqués, et que l'on peut justement dès lors qualifier d'inspirateurs et d'expirateurs, sont décrits avec le plus grand soin par M. Sabatier; nous nous bornerons à les indiquer ici, renvoyant pour de plus amples détails anatomiques au mémoire de cet auteur. Pour la ceinture pelvienne, la disposition est fort simple. Deux paires de muscles épais, courts et rayonnants, s'insèrent au pubis et à l'apophyse pelvienne : les deux muscles antérieurs (*attrahens pelvim*, Bojanus) se portent en avant et se fixent au plastron ; ils sont prémoteurs de la ceinture ou expirateurs. Les deux muscles postérieurs (*retrahens pelvim*) s'insèrent à l'extrémité des xiphoplastrons ; ils sont rétromoteurs ou inspirateurs.

Les muscles moteurs de la ceinture thoracique (prémoteurs et rétromoteurs de M. Sabatier) présentent un développement plus important. Parmi ces muscles, il en est deux, le *grand pectoral* et le *grand dorsal*, qui agissent comme expirateurs. Le grand pectoral se porte de la tubérosité de l'humérus à la

Fig. 4. — A, tracé respiratoire; B, tracé de la ceinture thoracique.

ANN. SC. NAT., ZOOL., OCTOBRE 1883. — ART. NO 5.
région centrale et antérieure du plastron où il s’insère sur une
large surface par de nombreuses fibres épanouies en éventail ;
sa direction générale est d’avant en arrière et de dehors en
dedans. Le grand dorsal s’étend de la partie supérieure du
corps de l’humérus à la face interne de la première plaque
costale de la carapace : ses fibres se portent en arrière et en
haut. Comme inspirateur, le petit pectoral (Sabatier), décrit
par Bojanus et Owen sous le nom de serratus magnus, semble
jouer un rôle très important : large et mince, ce muscle s’étend
du bord interne du coracoïde et de l’arcade fibreuse coraco-
procoracoïdienne jusqu’aux première et deuxième plaques
costales ; ses fibres se portent de dedans en dehors. Par l’excite-
tation électrique localisée, au moyen de courants induits très
faibles, nous avons exactement déterminé le rôle et l’action de
ces muscles ; ce mode d’investigation donne des résultats par-
faitement nets, surtout en ce qui concerne le grand dorsal et
le petit pectoral. Il est aisé de voir, quand se contracte le grand
dorsal, la demi-ceinture exécuter un mouvement considérable
de rotation en dedans autour de l’axe fictif indiqué ; le petit
pectoral excité à son tour provoque une rotation en dehors
non moins énergique. En substituant aux termes « prémoteurs
et rétromoteurs » ceux de rotateurs en dehors et de rotateurs
en dedans, on définit, croyons-nous, d’une façon exacte les
rôles respectifs de ces muscles. Le grand dorsal, combinant
son action avec celle du grand pectoral, est donc expirateur ;
le petit pectoral est inspirateur.

Les figures 5 et 6, planche 43, montrent les positions
extrêmes des coracoïdes au maximum d’écartement (fig. 5) et
de rapprochement (fig. 6), telles qu’elles se présentent aux
deux temps de la respiration, ou sous l’influence de l’excita-
tion localisée.

Il est actuellement naturel de se demander quelles sont les
parts respectives des ceintures et des muscles respiratoires
classiques dans l’ensemble du mécanisme ; et en outre, quelle
est, des deux ceintures, celle qui joue le plus grand rôle. Ces
deux questions connexes ont été examinées par nous en em-

L. CHARBONNEL-SALLE.
ployant un procédé général fort simple : l'immobilisation successive tantôt de l'une, tantôt de l'autre ceinture, et enfin des deux à la fois.

On peut immobiliser les ceintures dans l'état d'écartement ou au contraire de rapprochement maximum ; et divers procédés conduisent à ce but, plus difficile à atteindre qu'on ne le pense tout d'abord, à raison de la grande vigueur musculaire de l'animal. Nous avons employé tantôt des crochets et des liens fortement amarrés, d'autres fois la ligature des deux coracoïdes sur la ligne médiane, enfin l'extension forcée des membres ; celle-ci, comme le prouve l'examen direct, arrête très bien tout déplacement des leviers osseux, pelviens et thoraciques. Le résultat général de ces expériences, pour la Testudo greca, est le suivant : en fixant la ceinture pelvienne on modifie déjà l'amplitude de la respiration ; on diminue beaucoup plus cette amplitude par l'arrêt exclusif de la ceinture thoracique, mais le rythme normal est encore conservé. Enfin, les deux ceintures immobilisées réduisent le tracé respiratoire à de très faibles proportions et, de plus, altèrent complètement sa forme typique. La figure 7 donne un exemple de ces modifications. En résumé, il n'y a de vrais mouvements respiratoires, avec leur rythme spécial, qu'à la condition que les ceintures agissent, et c'est à la ceinture thoracique que revient

![Figure 7](image-url)
la plus grande part dans l'action commune. Quant aux muscles respiratoires proprement dits de Townsend, de Weir Mitchell et autres auteurs, on voit que leur influence est très faible, leur rôle très effacé dans l'ensemble : résultat physiologique concordant avec l'état rudimentaire que nous révèle l'examen anatomique.

Nous avons essayé d'indiquer clairement par un schéma les notions physiologiques qui ressortent de notre exposé, et nous rapprochons de ce schéma celui par lequel M. Sabatier, dans son mémoire, exprime les mouvements des ceintures (fig. 8). On voit dans ce dernier représentant une coupe verticale antéro-postérieure que les mouvements convergents des ceintures, de T en T' et de P en P', diminuent la cavité thoraco-abdominale des deux triangles striés, l'antérieur plus grand que le postérieur. Ce schéma, exact pour la ceinture pelvienne, ne représente pas, selon nous, les vrais mouvements de la ceinture thoracique. Pour indiquer théoriquement le véritable rôle des ceintures dans la respiration (fig. 9), nous supposerons simplement l'animal vu par sa face inférieure horizontale, et le plastron enlevé : la ceinture pelvienne PP, venant en PP' diminue la cavité générale d'une quantité représentée par le rectangle PPP'P' et les deux moitiés de la ceinture thoracique, mobiles autour du point 0, suivant l'arc de cercle TT', enlèvent à cette cavité les deux
triangles OTT', dont la somme est supérieure au rectangle postérieur.

Nous avons répété les recherches anatomiques et les expériences précédentes sur la *Cistudo europea* ou Tortue bourbeuse, de la famille des Elodites. Ce groupe de Chéloniens, établit, comme on sait, le passage entre les Tortues terrestres et les Tortues vraiment aquatiques. Nous trouvons ici un plasttron légèrement mobile, s'articulant au moyen de ligaments avec la carapace ; les échancrures des flancs ont une profondeur bien plus grande que dans la *Testudo graeca*. Si l'on examine la région circonscrite par cette échancrure, on voit, au moment où l'animal respire, se former une dépression très profonde immédiatement suivie d'un soulèvement tout aussi marqué. L'énergie très grande de ce phénomène, que l'on observe aussi en petit dans l'espèce terrestre, semble indiquer immédiatement une puissante action des muscles oblique et transverse de l'abdomen.

C'est là un premier indice d'une différence possible de mécanisme respiratoire entre la Tortue grecque et l'espèce que nous étudions maintenant. Si nous interrogeons l'expérience, en mettant à découvert les deux ceintures, comme précédemment, nous constatons encore des déplacements assez étendus de ces leviers osseux, déplacements liés à la respiration, et les graphiques nous montrent bien qu'il existe une relation intime entre les deux phénomènes. Nous nous abstiendrons naturellement d'indiquer les détails de ces expériences, identiques, comme méthode et comme résultats, à celles que nous avons décrites. Mais cette similitude est loin d'être absolue. En cherchant à nous rendre compte de l'importance proportionnelle des ceintures, d'une part, des muscles oblique, diaphragmatique et transverse, d'autre part, nous avons vu et enregistré le fait suivant : la respiration continue à se produire, avec son rythme normal et une énergie considérable, les ceintures étant immobilisées, soit par rapprochement, soit par écartement forcés. On voit, par exemple, après avoir fixé au moyen de crochets de fer les pubis et les coracoïdes, l'amplitude des
inspirations diminuer à peine d’un tiers. Encore est-il à noter que dans ces conditions, le jeu des muscles des flancs, dont les contractions alternatives sont visibles extérieurement, doit être légèrement entravé par la manipulation qu’exige l’expérience. Cette action relativement puissante de ces muscles peut être d’ailleurs directement démontrée, en excitant par l’électricité le muscle inspirateur, mis à nu par la dissection, et en recueillant au moyen d’un tube trachéal le tracé des mouvements de l’air. La Testudo greeca, dans ces conditions, donne un tracé où les excitations se marquent à peine par de légères ondulations; avec la Cistude, au contraire, on obtient des tracés où chaque contraction du muscle produit un déplacement étendu du levier inscripteur.

Il existe donc entre les deux ordres de puissances motrices mises en jeu dans la respiration un rapport inverse, au point de vue de l’importance physiologique, suivant que l’on considère une espèce terrestre ou une espèce aquatique. Nous voyons que, par une sorte d’adaptation, les Chéloniens terrestres, à plastron fort étendu dans le sens longitudinal, et jouant d’autant mieux son rôle protecteur, ont la faculté d’employer dans une large mesure leurs deux ceintures pour la respiration; car cette grande extension du plastron réduit forcément les échancrures des flancs, où sont logés les muscles respiratoires, et restreint à la fois le développement et le rôle de ces muscles. Chez les Chéloniens aquatiques nous trouvons des dispositions inverses, et l’importance des ceintures diminue au point de devenir nulle pour l’une d’entre elles, ainsi qu’on le constate dans certains cas particuliers.

Effectivement dans une famille de Tortues Elodites, les Pleurodères de Duménil et Bibron (1), représentées surtout par le genre Chelys, on remarque un fait anatomique qu’il est intéressant de rapprocher de la différence d’action des deux ceintures: c’est la soudure de la ceinture pelvienne au plastron. Cette ceinture immobilisée en bas, aussi bien que du côté ver-
tébral, est donc ici déchue de tout rôle dans la respiration, et ce fait se relie intimement, d’une part à la moindre importance respiratoire de la ceinture pelvienne, d’autre part à la diminution notable de l’influence générale des ceintures chez les Tortues aquatiques, telle que nous l’avons constatée chez la *Cistudo europaea*.

Nous signalerons, en terminant cette étude, une particularité du *rythme respiratoire* chez la *Cistude*, fait qui peut présenter un certain intérêt bien qu’il ne se rattache pas directement à la question de mécanisme que nous avons traitée. On sait, depuis les expériences de M. Paul Bert, quelle forme affecte le tracé de la respiration chez la Tortue grecque ; nos tracés en fournissent de nouveaux exemples (fig. 2, 4, 7).

L’inspiration dans cette espèce se fait en un seul temps, l’expiration au contraire en deux temps, séparés par une *pause* souvent fort longue. Dans la *Cistude* nous avons remarqué, dès nos premiers essais, que la *pause*, caractéristique générale de la respiration des Reptiles, a lieu en inspiration pleine, comme on le voit chez les Ophidiens (fig. 10, A, *bc*) (1). Le

(1) L’inclinaison de la ligne *bc* qui devrait être horizontale tient à l’imperfection de l’appareil enregistreur, surtout du tambour à levier, et à la rentré
tracé B de la même figure montre quelles modifications on fait subir à ce rythme en recueillant le graphique non plus à l'aide d'une muselière, mais par un tube introduit dans la trachée; dans ce cas, l'expiration be suit immédiatement l'inspiration, et les pauses sont presque supprimées, caractère qui montre que la pause inspiratoire est due, chez la Cistude, à l'occlusion de la glotte, suivant immédiatement la dilatation de la cavité viscérale.

Les faits anatomiques et physiologiques que nous venons d'exposer peuvent être résumés dans les conclusions suivantes:

1° Il y a, chez les Chéloniens, deux sortes d'agents moteurs affectés au service de la respiration: d'une part, les muscles respiratoires proprement dits (diaphragmatique, transverse et oblique de l'abdomen), d'autre part, les muscles moteurs des ceintures thoracique et pelvienne.

2° Ces deux ordres de puissances motrices ont dans l'ensemble des phénomènes des parts fort inégales, suivant que l'on considère une Tortue terrestre ou une Tortue aquatique. Dans la première, les muscles propres de la respiration sont rudimentaires et les ceintures jouent le plus grand rôle. Chez la seconde, les muscles respiratoires bien développés ont une importance au moins égale à celle des ceintures.

3° La ceinture pelvienne se déplace par un mouvement de bascule dans le sens antéro-postérieur, autour de ses articulations vertébrales; la ceinture thoracique, fixée au plastron aussi bien qu'au rachis, effectue dans chacune de ses deux moitiés une rotation transversale.

4° Des deux ceintures, c'est la thoracique qui, par ses mouvements, exerce la plus grande influence sur le renouvellement de l'air dans les poumons.

de l'air qui s'effectue par les fissures aussitôt après l'aspiration; nous nous sommes assuré, de toutes manières, que la pause a bien lieu en inspiration.
EXPLICATION DES FIGURES.

Fig. 1. — Coupe schématique transversale et verticale de la *Testudo graeca*, au niveau des échancrures postérieures de la carapace, montrant les muscles inspirateurs et expirateurs:

- P, plastron.
- C, carapace.
- CV, cavité viscérale.
- ob, muscle oblique de l'abdomen.
- tr, muscle transverse.

Les deux muscles sont adossés par leurs convexités. On a figuré des segments de cercle striés indiquant l'augmentation ou la diminution de la cavité viscérale lors des contractions alternatives des muscles.

Fig. 3. — Section transversale de la boîte osseuse de la *Testudo graeca*, montrant la ceinture thoracique dans sa situation normale:

- se, scapulum.
- co, coracoïde.
- pr, procoracoïde.
- arc, arcade fibreuse coraco-procoracoïdienne.
- art, articulation du scapulum avec la huitième vertèbre cervicale.
- I, ligament unissant l'extrémité inférieure du procoracoïde à l'entoplastron.

Fig. 5. — *Testudo graeca*, couchée sur le dos. Portion antérieure de l'animal; le plastron est enlevé. Les deux moitiés de la ceinture thoracique sont au maximum d'écartement (expiration).

- gp, grand pectoral.
- pp, petit pectoral.
- gd, grand dorsal.
- obe, obturateur externe de l'épaule.
- ap, partie antérieure de l'aponévrose viscérale
- ar c, arcade coraco-procoracoïdienne.

Fig. 6. — Mêmes dispositions qu'à la figure précédente; les deux moitiés de la ceinture thoracique sont rapprochées au maximum (inspiration).

Fig. 8. — Coupe schématique suivant un plan vertical antéro-postérieur; les ceintures sont représentées en projection sur ce plan vertical:

- T, ceinture thoracique portée en avant (inspiration).
- T', la même, portée en arrière (expiration).
- P, ceinture pelvienne portée en arrière (inspiration).
- P', la même, portée en avant (expiration).
Fig. 9. — Schéma des mouvements respiratoires des ceintures chez les Chéloniens. Section horizontale et transversale :

PP, ceinture pelviennne en inspiration.
PP', la même, en expiration.
O, axe de rotation des deux moitiés de la ceinture thoracique.
OT, la demi-ceinture en inspiration.
OT', la même en expiration.

Les figures 2, 4, 7 et 10 sont des tracés dont l'explication a été donnée dans le texte.
La classification des Poissons osseux Chorignathes doit être malheureusement regardée comme encore très imparfaite, au moins en ce qui concerne l’établissement de coupes d’ordre supérieur. En étudiant l’historique de cette question, on est au reste frappé de voir combien, depuis les premiers essais de classifications, les bases, sur lesquelles on les fonde, sont restées les mêmes, et, malgré tous les efforts tentés dans cette voie par Cuvier, Agassiz, Mueller, pour ne citer que les plus illustres, on en reste toujours comme divisions primaires à celles indiquées par les anciens ichthyologistes Willughby et Ray.

Ces derniers ont proposé une classification méthodique des Poissons, laquelle, malgré de nombreux défauts, qu’explique assez l’époque ancienne de sa publication, nous étonne encore par sa profondeur de vue, lorsqu’on songe surtout que rien d’analogue n’avait été tenté jusqu’alors et que les travaux de Belon, de Rondelet, tout en apportant de nombreux et importants matériaux pour la connaissance des espèces, avaient laissé de côté la question des groupes à établir ou les formaient d’après des conditions d’habitat que les auteurs anglais ont fort justement reléguées en dernière ligne. Sans entrer dans le détail de cette classification (1), ayant égard seulement à

(1) Le tableau synoptique ci-dessous fera comprendre les vues générales de Willughby et Ray à ce sujet; il résume la classification adoptée dans l’Historia Piscium, en 1686; pour plus de clarté, dans une dernière colonne se trouve le ANM. SC. NAT., ZOOL., OCTOBRE 1883. XX. 22*. — ART N° 6.
ce qui se rapporte d'une manière plus directe à notre sujet, on voit que Willughby et Ray, après avoir divisé les Poissons en deux grands groupes, les Cartilagineux et les Osseux, idée empruntée à Aristote et déjà adoptée par Belon, partagent ces derniers d'après la forme d'abord, puis, pour ceux qui ont le corps ramassé (*corpore contractiore*), d'après l'absence ou la présence des ventrales. Les animaux présentant ce dernier caractère sont munis d'épines à la dorsale et à l'anale ou au contraire n'offrent que des rayons mous; cette division en *aculeati* et *anonculeati* a certainement inspiré Artedi pour créer les groupes des Acanthoptérygiens et des Malacoptérygiens. Depuis cette époque les idées sont, on peut le dire, restées les mêmes. Cuvier, qu'on doit regarder à juste titre comme ayant le premier proposé une classification satisfaisante des Poissons, a repris sur ce point les idées anciennes en se servant des termes mêmes créés par Artedi, et, malgré les modifications introduites par Agassiz, par Mueller, les principes de ce système sont encore généralement adoptés.

Il ne faudrait pas conclure de ce consentement presque unanime à la perfection de la méthode, car les affinités naturelles forcent trop souvent de ne pas la respecter: ainsi les *Gadopsis*, quoique présentant à leur nageoire dorsale de véritables épines, sont rangés par M. Günther parmi les *Anacanthini*, correspondant aux Malacoptérygiens subbrachiens de Cuvier; les *Ophi-

nom d'animaux appartenant à chacun des groupes. Les auteurs n'ont pas, toutefois, exprimé leurs idées sous cette forme synoptique, bien que ce mode d'exposition, si démonstratif et si généralement adopté aujourd'hui, ne leur fût pas étranger, ils l'ont en effet employé pour l'étude des Poissons cartilagineux (*loc. cit.*, p. 46).

PISCES.

<table>
<thead>
<tr>
<th>Cartilagineux</th>
<th>Squales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovis magnus Longi</td>
<td>Baies.</td>
</tr>
<tr>
<td>Ovis parvis Plani</td>
<td>Banderoles.</td>
</tr>
<tr>
<td>Plani</td>
<td>Pleurocentes.</td>
</tr>
<tr>
<td>Anguilliformes Anguille.</td>
<td></td>
</tr>
<tr>
<td>Acanthoptérygiens</td>
<td>Morue.</td>
</tr>
<tr>
<td>Corpore contractiore</td>
<td>Saumon.</td>
</tr>
<tr>
<td>Non aculeati</td>
<td>1</td>
</tr>
<tr>
<td>Um ventralibus</td>
<td>2</td>
</tr>
<tr>
<td>Com ventralibus</td>
<td>t</td>
</tr>
<tr>
<td>Anguilla.</td>
<td>Carpe.</td>
</tr>
<tr>
<td>Aculeati</td>
<td>Perche.</td>
</tr>
<tr>
<td>Labre.</td>
<td></td>
</tr>
</tbody>
</table>

ARTICLE N° 6.
POISSONS MALACOPTÉRYGIENS ABDOMINAUX.

cephalus et les Channa au contraire sont, par tous les ichthyologistes, rapprochés des Pharyngiens labyrinthiformes dans le sous-ordre des Acanthopterygii, bien que leurs nageoires dorsale et anale soient exclusivement composées de rayons mous.

Cependant, si, au lieu de considérer les divisions primaires de ces Poissons Téléostéens, on a égard à la réunion des genres en familles, il est aisé de se convaincre qu'à de rares exceptions près ces-eci sont réellement naturelles, et, si nous n'arrivons pas encore à les grouper d'une manière satisfaisante, c'est que les rapports multiples existant entre elles rendent d'une appréciation trop difficile leurs véritables affinités. Cette imperfection se retrouve d'ailleurs dans un grand nombre d'autres classes du règne animal, et même pour les végétaux, malgré les nombreux et importants travaux dont ces êtres ont été l'objet, on ne peut dire qu'on ait trouvé l'ordre réel à établir entre les familles naturelles, surtout celles composant la classe des Phanérogrammes dicotylédonées.

On éprouve dans ces recherches non seulement la difficulté de s'élever à une vue d'ensemble permettant d'apprécier ces rapports, mais encore l'embarras de les formuler d'une manière pratique. La disposition sériale étant insuffisante, lorsqu'il s'agit de groupes étendus et d'ailleurs répondant plus à l'idée que nous pouvons nous faire des rapports réciproques des animaux, on a proposé, comme on le sait, une classification parallélique ou en surface, suivant l'expression d'Isidore Geoffroy Saint-Hilaire, elle permet déjà d'exprimer des rapports plus nombreux, et nous fait saisir une des causes, qui peuvent égarer le zoologiste à la recherche de la classification sériale. En effet dans ces tableaux paralléliques ou réticulés, si une des colonnes, la verticale par exemple, exprime les rapports des êtres d'après leurs affinités, généralement la colonne horizontale offrira un arrangement basé sur les analogies, et, suivant qu'on aura adopté l'une ou l'autre direction, la classification sériale sera ou non naturelle. Enfin, en superposant ces tableaux paralléliques, on pourrait établir des rapports en profondeur, soit une classification à trois dimensions,
laquelle certainement serait encore plus parfaite, mais il faut dire que la réalisation en paraît difficile et aucune tentative sérieuse dans ce sens n’a été faite jusqu’ici.

C’est à ce dernier système que se rattachent les cercles superposés ou classification par étage de M. Chevreul (1). Ce savant a proposé une méthode ingénieuse, qui permettrait d’exprimer d’une manière plus exacte encore les rapports réciproques des êtres. Le type, qu’on croit préférable de choisir comme le plus parfait dans le cas donné, étant placé au centre d’un cercle, celui-ci devra contenir toutes les espèces analogues, s’il s’agit par exemple d’un genre ou d’un sous-genre. Les affinités plus ou moins grandes de telle ou telle de ces espèces avec le type pourront être exprimées par sa position plus ou moins rapprochée de celui-ci sur un rayon partant du point central ; enfin, si plusieurs espèces offrent des rapports de série, on pourra rendre le fait sensible en les disposant sur un même rayon.

Ayant eu l’occasion, dans le cours professé cette année au Muséum, d’exposer l’état actuel de la science pour ce qui concerne la classification des Téléostéens et en particulier de ceux constituant le sous-ordre des Abdominales, c’est-à-dire les Physostomi de Müller, moins les Apodes, j’ai cherché à établir pour ces Poissons, d’après un mode fréquemment employé, un tableau, sorte de classification graphique, indiquant les rapports que nous pouvons saisir entre les différentes familles dans lesquelles ils sont répartis.

Quant à ces familles mêmes, ce sont celles admises par M. Günther dans ses plus récents travaux, aujourd’hui devenus classiques en ichthyologie. Ce n’est pas qu’on doive, au moins pour quelques-unes, les regarder comme définitivement limitées, les méthodes empiriques dont on fait usage pour la classification des animaux laissent beaucoup de doute à cet égard ; il me paraît dès à présent probable qu’on pourrait avec avantage en diminuer le nombre et opérer quelques réunions. Ainsi,

ARTICLE N° 6.
lorsque l'on comprend dans la famille des Mormyridées des types tels que les *Mormyrus* et les *Gymnarchus*, si dissemblables par la structure de leur vessie natatoire, la disposition des dents, etc., et, dans le genre *Mormyrus*, des poissons d'un aspect aussi différent que le *Mormyrus oxyrhynchus*, Geoff., et le *M. bane*, Lacép., est-il rationnel de regarder les *Umbridae* comme distincts des *Esocidae*, et ne conviendrait-il pas également de réunir en un seul groupe les *Cyprinidae*, les *Kneriidae* et même les *Cyprinodontidae*, bien voisins les uns des autres, sauf la disposition des dents maxillaires et pharyngiennes? Toutefois ces points de détails n'ayant que peu d'importance, surtout lorsqu'il s'agit d'appréciation de rapports, il y a avantage à ne pas modifier sans raison majeure des divisions connues et adoptées dans la pratique.

Cuvier, pour la remarquable classification proposée dans son règne animal, et Valenciennes, son collaborateur et continuateur dans la grande histoire des Poissons, avaient adopté une méthode comparative que les idées des zoologistes plutôt portées aujourd'hui vers l'étude analytique, ont trop fait négliger. Prendant un animal, un groupe, mieux caractérisé ou mieux connu, il est étudié en détail et choisi comme le terme de comparaison, auquel sont rapportés tous les êtres analogues, qu'il suffit alors de brièvement caractériser. Ainsi voyons-nous pour le premier de ces ouvrages les Poissons dans leurs différents ordres être partagés en familles principales, puis entre celles-ci s'intercaler des genres intermédiaires; tels sont ceux énumérés comme lien entre les familles des Clupes et des Esoces, ou encore ceux qui font suite au groupe des Gobioïdes. La plupart de ces genres ont été élevés au rang de familles par les ichthyologistes modernes, ce qui rend la nomenclature plus régulière, mais il est juste de reconnaître que la plupart des rapports réels avaient précédemment été signalés.

Dans le sous-ordre des *Abdominales*, Malacoptérygiens abdominaux de Cuvier, cet auteur distinguait cinq types principaux, lesquels, encore à l'heure actuelle, peuvent être considérés comme les plus nettement caractérisés: les *Siluridae*, les
POISSONS MALACOPTÉRYGIENS ABDOMINAUX.

Cyprinidae, les Salmonidæ, les Esocidæ et les Clupeidæ; ce sont eux qui occupent le centre des cercles dans le tableau ci-joint.

La première de ces familles forme un ensemble si homogène qu'on n'a pas songé à y établir des divisions d'ordre élevé. La composition de la mâchoire supérieure exclusivement constituée par l'intermaxillaire, le maxillaire étant réduit d'ordinaire à une tige, base de l'un des barbillons, le tégument nu ou revêtu d'écaillles très différentes par leur aspect et leur structure générale de ce qu'elles sont chez les Poissons osseux ordinaires et se rapprochant incontestablement de celles qu'on trouve chez les Ganoïdes chondrostés, les caractérisent d'une manière très nette. Remarquons qu'une particularité à laquelle on a fait jouer un grand rôle pour la classification des autres Poissons abdominaux n'a pas été prise en considération au même rang dans ce groupe; c'est la présence ou l'absence de la nageoire adipeuse, que nous voyons exister ou manquer; soit dans les genres très voisins, tels que les Plecosostomus et les Rhinolepis, que ce caractère seul différencie, soit dans le même genre Otocinclus maculicauda, Steind., O. Joberti, Vaill., d'une part; O. vestitus, Cope, O. affinis, Steind., d'autre part, si bien qu'on serait tenté de croire qu'il ne s'agit là que d'une différence sexuelle (1).

Les Cyprinidae offrent, avec les précédents, des affinités incontestables, la composition de la mâchoire supérieure est la même, souvent on rencontre des barbillons, comparative-ment peu développés il est vrai, et, si le revêtement tégumentaire est celui des vrais Poissons osseux, cependant la constitution histologique du rayon dur de la dorsale, quand il existe, rappelle l'épine des Arius, des Bagrus, etc., par la présence des ostéoplastes. Toutefois la nature des écailles, appartenant au type cycloïde, justifie pleinement la distinction de ce groupe et son élévation au rang de famille.

Les Kneriidæ, réduits au petit genre Kneria, Steind. et les

L. VAILLANT.

les Cyprinodontidæ, diffèrent peu des précédents, quant à leur apparence générale, ce sont surtout les caractères tirés de la dentition, qui permettent de les distinguer ; chez les premiers ces organes manquent absolument, soit aux mâchoires, soit aux pharyngiens, tandis qu’ils existent sur l’un et l’autre appareil chez les seconds. On sait que les Cyprinidæ, dépourvus de dents maxillaires, en présentent sur les pharyngiens inférieurs ; elles y sont en nombre limité et proportionnellement fortes, tandis que les Cyprinodontidæ les ont nombreuses et faibles, en cardre. Quelle que soit la valeur attribuée à ces caractères différenciels, ces trois familles offrent des analogies qui doivent les faire rapprocher dans une classification naturelle.

On pourrait peut-être en dire autant des Heteropygii, petit groupe réduit à deux genres, dont un même mal connu, qui habitent les cavernes de la partie septentrionale du nouveau monde. La position de l’anus reporté en avant, au-dessous de la gorge, est le seul caractère distinctif, car la composition de la mâchoire supérieure, la constitution des écaillès, sont celles qu’on rencontre dans les groupes précédents.

Il en est tout autrement pour trois autres familles, qu’on doit cependant rapprocher des Cyprins, eu égard à la composition de la mâchoire supérieure, le bord en étant exclusivement constitué par les intermaxillaires. Mais l’écaillure des Percopsidæ devient très différente, puisqu’ils sont couverts, d’après Agassiz, d’écaillès céténoïdes. Quant aux Haplochitonidæ, le genre typique du groupe a la peau nue, comme certains Silures, l’une et l’autre de ces deux familles offrent d’ailleurs cette particularité à laquelle les ichthyologistes, à l’exemple de Cuvier, ont souvent attribué une importance prépondérante, la présence d’une nageoire adipeuse. Ce caractère se rencontre également chez les Scopelidæ, groupe composé d’espèces habitant les grandes profondeurs et que distingue des précédentes, entre autre disposition anatomique, l’absence de vessie natatoire. La nageoire adipeuse des Saurus, des Scopelus, des Haplochiton, avait fait réunir ces poissons.
POISSONS MALACOPTÉRYGIENS ABDOMINAUX.

aux Salmonidæ, il devrait en être de même des Percopsis ; la composition différente de la mâchoire supérieure m’engage à les en séparer, toutefois ils peuvent être considérés comme y faisant passage aussi bien qu’aux Silures chez lesquels, on l’a vu, cette particularité se rencontre parfois.

Chez les Esocidæ, réduits jusqu’ici au genre Esox, le maxillaire entre dans la composition de la mâchoire supérieure, bien qu’il ne porte pas de dents, l’intermaxillaire en étant toutefois pourvu. Il en est de même dans la plupart des familles, qui sont contenues dans ce cercle ; on peut ajouter que généralement la dorsale unique, plus ou moins semblable à l’anale, est opposée à celle-ci, toutes deux étant portées en arrière. Les Umbridæ, malgré un aspect très différent, rappelant celui des Cyprinidæ, avec lesquels ils ont été d’abord confondus, offrent toutefois des caractères généraux si voisins de ceux des Esocidæ, qu’on devrait sans doute, à l’exemple d’Heckel et Kner, les y réunir à titre de simple tribu. On pourrait en dire autant des Galaxiidae, lesquels toutefois sont privés d’écaillles comme les Haplochiton et les Silures ; ils offrent de plus quelques appendices pyloriques, organes qu’on ne rencontre ni chez les Esox, ni chez les Umbra.

Quant aux autres familles, elles sont plus aberrantes. Les Stomiatidæ, chez quelques-uns desquels se voit une nageoire adipeuse, renferment des animaux des grandes profondeurs et peuvent être considérés, d’après ce double caractère, comme faisant passage aux Salmonidæ et rappelant les Scopelidæ du groupe précédent. Les Alepocephalidae offrent des rapports avec les Stomiatidæ quant à leur habitat et ne sont pas sans présenter certaines analogies avec les Clupes avec lesquelles on pourrait aussi bien les placer.

La position des Mormyridæ et des Gonorhynchidae ne peut être considérée comme définitivement établie, la forme étrange de ces animaux, les écaillles pseudo-cténoïdes des seconds en font deux types très aberrants, toutefois c’est encore auprès des Esocidæ qu’ils semblent être le moins mal placés. Les
Scombresocidae, l'une des familles les plus nombreuses du groupe, offrent un caractère remarquable parmi les Abdominales, leur vessie natatoire étant close, privée de canal pneumatophore; c'est une analogie importante à établir avec les Anacanthini et même les Acanthopterigii. Enfin la famille des Pantodontidae, jusqu'ici réduite au seul Pantodon Buchholzii, Peters, diffère très notablement des vrais Esox par son maxillaire armé de dents fortes et nombreuses, cependant la position des nageoires dorsale et anale m'engage à les maintenir dans ce groupe, en les regardant toutefois comme un type très anormal.

On ne peut rapprocher des Salmonidae, considérés comme un troisième centre, qu'un petit nombre de familles, dès l'instant qu'on prend pour caractères dominateurs la présence d'une nageoire adipeuse et en première ligne la composition de la mâchoire supérieure, laquelle est constituée ici par les os maxillaires et intermaxillaires, soit, le plus souvent, l'un et l'autre dentifères, soit, ce qui est beaucoup plus rare, tous les deux inermes, comme chez les Coregonus. Les Characinidae si différents des précédents, avec leur joue cuirassée par suite de l'énorme développement des sous-orbitaires, leur vessie natatoire bilobée, l'absence de pseudobranchie, nous offrent des faits de même ordre quant à la dentition, et même, chez quelques-uns, la disposition des deux os intermaxillaire et maxillaire, soudés l'un à l'autre, est telle que ce dernier ne concourt pas en réalité à la formation de la mâchoire supérieure et manque de dents, l'intermaxillaire seul en étant muni, sans qu'il soit possible pour cela d'éloigner ces Poissons de la famille précédente.

Les Sternoptychidae forment un groupe se rapprochant des Salmonidae par la composition et l'armature de la mâchoire supérieure, mais en différant par leur aspect extérieur et surtout une écaillure imparfaite ou nulle; ce groupe établit un passage très évident aux Scopelidae, ainsi qu'aux Stomiidae, aussi pourrait-on admettre une liaison de second ordre (indiquée sur le tableau par un cercle ponctué) entre ces trois
familles, composées, pour la plus grande part, de Poissons bathyoikésites (1).

Les familles rapprochées des Clupeidæ sont assez comparables à celles du groupe des Esocidæ, étant formées chacune, en général, d’un petit nombre de genres et d’espèces; elles présentent des liaisons multiples avec les groupes voisins et souvent entre elles des affinités douteuses. La famille prise comme centre se rapproche des Salmonidæ par la composition de la mâchoire, constituée par l’intermaxillaire et le maxillaire, ce dernier présentant souvent une complication tout à fait inusitée, tous deux étant à la fois soit dentifères, soit édentules, mais jamais ces Poissons ne possèdent de nageoire adipueuse. Deux petites familles, ne comprenant chacune qu’une espèce, les Hyodontidæ et les Chirocentridæ, sont assez voisines pour qu’on puisse supposer qu’elles devront un jour y être jointes à titre de simples sections, la différence la plus notable se tire de la disposition des cœcum stomacaux, nuls chez les seconds, réduits à un seul chez les premiers, tandis qu’ils sont nombreux dans les véritables Clupes. Malgré l’importance attribuée à ces organes par les zoologistes, en l’absence de données positives sur leur rôle physiologique, il est difficile de décider s’il n’y a pas exagération dans cette manière d’interpréter la valeur du caractère. Le sous-orbitaire postérieur de l’Hyodon tergisus étendu jusqu’au préoperculaire établirait un certain lien avec les Characinidæ.

Les Bathythrissidæ sont encore imparfaitement connus; leurs rapports avec les Clupeidæ paraissent cependant incontestables.

Quant aux Notopteridæ et aux Halosauridæ, ce sont deux groupes aberrants et que la singularité de leurs formes, plus que tout autre caractère, permet, jusqu’à un certain point, de placer parallèlement aux Mormyridæ et aux Gonorhynchidæ; cette liaison doit toutefois être considérée comme bien moins naturelle que celles signalées plus haut, ils se rat-

(1)

Ba6u; profond; òhhxji; demeure.
tachent d'ailleurs aux précédents par la composition de la mâchoire supérieure et l'absence d'adipeuse.

Les Osteoglossidae ne peuvent guère être placés ailleurs qu'avec les Clupes, leur organisation très spéciale doit cependant les faire considérer comme un groupe excentrique, la présence chez l'Heterotis, entre autres, d'une vessie natatoire, laquelle peut, suivant toute vraisemblance, servir à la respiration, la constitution des écaillés, qui rappelle celle des Ceratodus, des Protopterus, des Lepidosiren, permettent de saisir un rapprochement entre les Abdominales et les Dipnoïdes comme les Siluridae, par les Doras ou autres Poissons cuirassés forment passage aux Ganoïdes.

En résumé, le sous-ordre des Abdominales, sans préjuger des modifications que les études ultérieures apporteront à la classification des Poissons osseux, forme un groupe assez homogène, dont les différents membres se relient entre eux de façons variées. Au point de vue de l'habitat, ces animaux, pris dans leur ensemble, nous offrent ce fait important de renfermer le plus grand nombre des Poissons des eaux douces. Sur les vingt-sept familles admises, près des deux tiers, dix-sept (1), ne nous présentent pas d'espèces marines, et parmi elles se rangent les groupes les plus riches en formes spécifiques, il suffit de citer les Siluridae, les Cyprinidae avec les Cyprinodontidae, les Salmonidae avec les Characinidae, tandis que pour les dix familles restantes plusieurs ne renferment jusqu'ici qu'un très petit nombre d'espèces, parfois une seule, telles sont les Gonorynchidae, les Alepocephalidae, les Halosauridae, les Chirocentridae, les Bathythysidae. On remarquera également, à ce même point de vue, que, parmi les cinq grands groupes admis sur ce tableau graphique, celui des Siluridae n'offre aucune espèce marine ; dans deux autres, Cyprinidae et Salmonidae (2), les familles composées d'espèces bathyoikésites

(1) Les familles ne renfermant que des Poissons d'eaux douces sont soulignées dans le tableau, page 5.
(2) Un grand nombre des Poissons composant cette famille sont anadromes.
POISSONS MALACOPTÉRYGIENS ABDOMINAUX.

sont les seules qui fassent exception. Pour les groupes des Eso-cide la proportion des espèces qui habitent les eaux douces diminue notablement, car, si le nombre des familles renfermant ces dernières y est un peu plus grand, cinq contre quatre, il faut remarquer que celles où les espèces sont nombreuses, Scombresocidae, Stomiidae, par exemple, se trouvent dans les eaux salées. La même remarque s'applique à plus forte raison encore aux Clupeidae.

Cette même question d'habitat, à un point de vue plus général, pour l'ordre des Chorignathi, nous montre aussi que la grande majorité des espèces des eaux douces appartiennent au sous-ordre des Abdominales. D'après les chiffres donnés par les auteurs (1) sur le nombre des espèces qui appartiennent à chacune de ces grandes divisions, on peut estimer celles comprises dans ce dernier sous-ordre à 2000, sur lesquelles 1900 environ, soit 95 pour 100, habitent les eaux douces; les Anacanthini, beaucoup moins nombreux, 350 espèces, n'en ont que 3, moins de 1 pour 100; les Acanthopterygii sur à peu près 3000 espèces, en offrent 295 comme des eaux douces, ou 10 pour 100.

En voyant une concordance si frappante entre la classification actuellement adoptée pour les Poissons Téléostéens et leur habitat, ne peut-on point se demander si le rapprochement des familles n'est pas basé sur des caractères d'analogie, en rapport avec le milieu où vivent ces animaux, plutôt que sur de réelles affinités ?

et passent une partie de leur vie dans les eaux marines, ils doivent être cepen-dant considérés comme habitant plutôt les eaux douces, dans lesquelles ils se reproduisent, séjournent d'ordinaire pendant les premiers temps de leur existence et ont été jusqu'ici exclusivement capturés.

TABLE DES MATIÈRES
CONTENUES DANS CE VOLUME

Recherches anatomiques sur les genres Pelta et Tylodina, par M. VAYSSIÈRE
Histoire malacologique de l'Abyssinie, par M. BOURGUIGNAT
Crustacés rares ou nouveaux des côtes de France, par M. HESSE
(Trente-troisième article)
Mémoire sur les Cystiques des Ténias, par M. VILLOT
Le procédé opératoire de la Sangsue, par M. J. CARLET
Recherches anatomiques et physiologiques sur le mécanisme de la respiration chez les Chéloniens, par M. CHARBONNEL-SALLE
Recherches sur les affinités naturelles des familles composant le sous-ordre des Poissons malacoptérygiens abdominaux, par M. L. VAILLANT

TABLE DES ARTICLES PAR NOMS D'AUTEURS.

||
BOURGUIGNAT. — Histoire malacologique de l'Abyssinie...	2	VAILLANT. — Recherches sur les affinités naturelles des familles composant le sous-ordre des Poissons malacoptérygiens abdominaux...
CARLET. — Le procédé opératoire de la Sangsue...	5	VAYSSIÈRE. — Recherches anatomiques sur les genres Pelta et Tylodina...
CHARBONNEL-SALLE. — Recherches anatomiques et physiologiques sur le mécanisme de la respiration chez les Chéloniens...	6	VILLOT. — Mémoire sur les Cystiques des Ténias...
HESSE. — Crustacés rares ou nouveaux des côtes de France...	3	

TABLE DES PLANCHES CONTENUES DANS CE VOLUME.

| Plancher |
|---|---|
| 1. | Pelta coronata. |
| 2. | Pelta coronata et Tylodina. |
| 3. | Tylodina. |
| 5. | Pandare de l'Aiguillât. |
| 6. | Pandares de divers Poissons. |
| 7. | Urocystes et Monocerques. |

FIN DE LA TABLE DES MATIÈRES.

Fig. 13-24. Pello commixta. Fig. 22-24. Tylodina.
1-7, Noguère de l'Aiguillat. 8-17, Lepimacre Jourdain.
Pandare de l'Aiguillat.
Cécrops de l'Aiguillat.
Pandares de divers Poissons.
Mollusques d'Abyssinie.
Mollusques d'Abyssinie.
Mollusques d’Abyssinie.
Mollusques d'Abyssinie.
CARTE MALACO-STRATIGRAPHIQUE DE L'AFRIQUE
d'après M. J.R. Bourguignat

Centre Africain, s'étendant sur toute la surface centrale du Continent.

Petit Centre Natalique, ou du Cap.

Centre Malgache, qui a récolté le long du littoral oriental jusqu'au Cap Sud de l'Arabie.

Centre Asiatico-Européen, qui se subdivise en sous-centres Taurique, Algérien et Hispanique.
Procyctes et Monocerques

Imp. Lemercier et Cie, Paris.
Organes inspirateurs des Tortues.
ANNÁLES DES SCIENCES NATURELLES

ZOOLOGIE
ET
PALÉONTOLOGIE

COMPRENANT
L'ANATOMIE, LA PHYSIOLOGIE, LA CLASSIFICATION ET L'HISTOIRE NATURELLE DES ANIMAUX

PUBLIÉES SOUS LA DIRECTION DE
MM. H. ET ALPH. MILNE EDWARDS

TOME XV, N° 1.

PARIS

G. MASSON, ÉDITEUR
LIBRAIRE DE L'ACADÉMIE DE MÉDECINE DE PARIS
Boulevard Saint-Germain et rue de l'Éperon
EN FACE DE L'ÉCOLE DE MÉDECINE
1883

Paris, 25 Fr. — Départements, 26 Fr.
Publié en avril 1883.
CONDITONS DE LA PUBLICATION

ANNALES DES SCIENCES NATURELLES
SIXIÈME SÉRIE

Il paraît chaque année 2 vol. gr. in-8°, avec les planches correspondant aux Mémoires. Chaque volume est publié en six cahiers paraissant mensuellement.

Prix de l'abonnement annuel :

25 fr.

Botanique, publiée sous la direction de M. Ph. Van Tieghem.
Il paraît chaque année 2 vol. gr. in-8°, avec les planches correspondant aux Mémoires. Chaque volume est publié en six cahiers paraissant mensuellement.

Prix de l'abonnement annuel :

25 fr.

Prix des collections :

Première série (Zoologie et Botanique réunies), 30 vol. (Rare.)

ANNALES DES SCIENCES GÉOLOGIQUES

Il est publié chaque année, à partir de janvier 1870, 1 vol. gr. in-8°, avec les planches et figures dans le texte correspondant aux Mémoires. Le volume paraît en quatre fascicules trimestriels.

Prix de l'abonnement annuel :

15 fr.

Nota. — Il est accepté des abonnements aux Annales des sciences naturelles et aux Annales des sciences géologiques, en tout cinq volumes annuellement, au prix de 60 francs au lieu de 65 francs.
Demi-reliure maroquin.. 25 fr.

Echinides fossiles de l'Algérie. Description des espèces déjà recueillies dans ce pays et considérations sur leur position stratigraphique, par MM. Cotteau, Péron et Gauthier. Huitième fascicule : Étage sènonien, 2e partie, gr. in-8° avec 12 planches....... 15 fr.

Le texte sera publié prochainement au prix de............... 5 fr.
La première partie de l'ouvrage a été publiée à 40 francs.

Synthèse des minéraux et des roches, par M. Fouqué, membre de l'Institut, professeur au Collège de France, et M. Michel Lévy, ingénieur des mines, attaché au service de la carte géologique de la France. 1 vol. in-8°, avec une planche en photochromie.... 12 fr.

L'art de greffer les arbres, arbrisseaux et arbustes fruitiers, forestiers, etc., par M. Ch. Baltet, horticulteur à Troyes. Troisième édition entièrement revue et augmentée, comprenant notamment la restauration des arbres et le rétablissement de la vigne par la greffe. 1 vol. in-12 de 460 pages avec 145 figures dans le texte 4 fr.

Reconstruction des arbres gelés, au moyen du recepage et du greffage, par M. Ch. Baltet, horticulteur à Troyes, in-8° avec 19 figures dans le texte.. 1 fr.

Almanach de l'Agriculture pour 1883, publié par M. J. A. Barral, secrétaire perpétuel de la Société centrale d'agriculture de France. 1 vol. in-18 avec nombreuses figures dans le texte 50 c.
TABLE DES MATIÈRES

CONTENUES DANS CE CAHIER

ARTICLE N° 1. Recherches anatomiques sur les genres Pelta (Rucina) et Tylo-
dina, par M. Vayssiètre.

Planches contenues dans ce cahier.

Planche 1. Pelta coronata.
 — 3. Tyloïdina.

ANNALES
DES
SCIENCES NATURELLES

ZOOGOLOGIE
ET
PALÉONTOLOGIE

COMPRENANT
L'ANATOMIE, LA PHYSIOLOGIE, LA CLASSIFICATION
ET L'HISTOIRE NATURELLE DES ANIMAUX

PUBLIÉES SOUS LA DIRECTION DE
MM. H. ET ALPH. MILNE EDWARDS

TOME XV, N° 2, 3, 4.

PARIS

G. MASSON, ÉDITEUR
LIBRAIRE DE L'ACADÉMIE DE MÉDECINE DE PARIS
Boulevard Saint-Germain et rue de l'Éperon
EN FACE DE L'ÉCOLE DE MÉDECINE
1883

Paris, 25 Fr. — Départements, 26 Fr.
Publié en septembre 1883.
CONDITIONS DE LA PUBLICATION

ANNALES DES SCIENCES NATURELLES
SIXIÈME SÉRIE

Zoologie, publiée sous la direction de MM. H. et ALPH. MILNE EDWARDS.

Il paraît chaque année 2 vol. gr. in-8°, avec les planches correspondant aux Mémoires. Chaque volume est publié en six cahiers paraissant mensuellement.

Botanique, publiée sous la direction de M. PH. VAN TIEGHEN.

Il paraît chaque année 2 vol. gr. in-8°, avec les planches correspondant aux Mémoires. Chaque volume est publié en six cahiers paraissant mensuellement.

Prix des collections :

PREMIÈRE SÉRIE (Zoologie et Botanique réunies), 30 vol. (Rare.)

ANNALES DES SCIENCES GÉOLOGIQUES

Dirigées, pour la partie géologique, par M. HÉBERT et pour la partie paléontologique, par M. ALPHONSE MILNE EDWARDS.

Il est publié chaque année, à partir de janvier 1870, 1 vol. gr. in-8°, avec les planches et figures dans le texte correspondant aux Mémoires.

Le volume paraît en quatre fascicules trimestriels.

Prix de l’abonnement annuel : 45 fr.

Nota. — Il est accepté des abonnements aux Annales des sciences naturelles et aux Annales des sciences géologiques, en tout cinq volumes annuellement, au prix de 60 francs au lieu de 65 francs.
A LA MÊME LIBRAIRIE

Demi-reliure maroquin 25 fr.

Le texte sera publié prochainement au prix de 5 fr.

La première partie de l'ouvrage a été publiée à 40 francs.

Synthèse des minéraux et des roches, par M. Fouqué, membre de l'Institut, professeur au Collège de France, et M. Michel Lévy, ingénieur des mines, attaché au service de la carte géologique de la France. 1 vol. in-8°, avec une planche en photochromie 12 fr.

L'art de greffer les arbres, arbisseaux et arbustes fruitiers, forestiers, etc., par M. Ch. Baltet, horticulteur à Troyes. Troisième édition entièrement revue et augmentée, comprenant notamment la restauration des arbres et le rétablissement de la vigne par la greffe. 1 vol. in-12 de 460 pages avec 145 figures dans le texte .. 4 fr.

Reconstruction des arbres gelés, au moyen du recepage et du greffage, par M. Ch. Baltet, horticulteur à Troyes, in-8° avec 19 figures dans le texte ... 4 fr.

Almanach de l'Agriculture pour 1883, publié par M. J.-A. Bar-ral, secrétaire perpétuel de la Société centrale d'agriculture de France. 1 vol. in-18 avec nombreuses figures dans le texte ... 50 c.
TABLE DES MATIÈRES

CONTENUES DANS CE CAHIER

Planches contenues dans ce cahier.

Planches 7, 8, 9, 10. Mollusques d’Abyssinie.

ANNALES
DES
SCIENCES NATURELLES

ZOOLOGIE
ET
PALÉONTOLOGIE

COMPRENANT
L'ANATOMIE, LA PHYSIOLOGIE, LA CLASSIFICATION
ET L'HISTOIRE NATURELLE DES ANIMAUX

PUBLIÉES SOUS LA DIRECTION DE
MM. H. ET ALPH. MILNE EDWARDS

TOME XV, N° 5 ET 6.

PARIS
G. MASSON, ÉDITEUR
LIBRAIRE DE L'ACADÉMIE DE MÉDECINE DE PARIS
Boulevard Saint-Germain et rue de l'Éperon
EN FACE DE L'ÉCOLE DE MÉDECINE
1883

PARIS, 25 FR. — DÉPARTEMENTS, 26 FR.
CONDITIONS DE LA PUBLICATION

ANNALES DES SCIENCES NATURELLES
SIXIÈME SÉRIE

Il paraît chaque année 2 vol. gr. in-8°, avec les planches correspondant aux Mémoires. Chaque volume est publié en six cahiers paraissant mensuellement.

Prix de l'abonnement annuel : 25 fr.

Botanique, publiée sous la direction de M. Ph. Van Tieghem.
Il paraît chaque année 2 vol. gr. in-8°, avec les planches correspondant aux Mémoires. Chaque volume est publié en six cahiers paraissant mensuellement.

Prix de l'abonnement annuel : 25 fr.

Prix des collections :

Première série (Zoologie et Botanique réunies), 30 vol. (Rare.)

ANNALES DES SCIENCES GÉOLOGIQUES

Dirigées, pour la partie géologique, par M. Hébert et pour la partie paléontologique, par M. Alphonse Milne Edwards.
Il est publié chaque année, à partir de janvier 1870, 1 vol. gr. in-8°, avec les planches et figures dans le texte correspondant aux Mémoires.
Le volume paraît en quatre fascicules trimestriels.

Prix de l'abonnement annuel : 15 fr.

Nota. — Il est accepté des abonnements aux Annales des sciences naturelles et aux Annales des sciences géologiques, en tout cinq volumes annuellement, au prix de 60 francs au lieu de 65 francs.
Ouvrage illustré de 40 planches hors texte et de 260 figures dessinées par Frédéric Specht, et gravées sur bois sous sa direction. 1 vol. in-4°.
Prix, broché .. 32 fr.
Richement relié 40 fr.

L'Océan Aérien, Études météorologiques par Gaston Tissandier, rédacteur en chef du journal La Nature. La pression barométrique, la chaleur, la vapeur d'eau, les nuages, l'électricité et le magnétisme, les phénomènes lumineux, les poussières de l'air, les instruments d'observation, la conquête de l'atmosphère, accompagné de dessins des phénomènes aériens par Albert Tissandier. 1 vol. grand in-8° avec 132 figures, dont 4 planches hors texte, broché 40 fr.
Relié avec luxe, fers spéciaux 13 fr.

La Science dans l'antiquité.— Les Origines de la Science et ses premières applications, par A. de Rochas. — Les peuples pré-historiques, la Civilisation égyptienne, la Science grecque, l'origine du feu, la Statue de Memnon, les Prestiges des Temples, les automates d'Homère et de Héron, les Miroirs ardens, etc., etc. Autel merveilleux (d'après Héron). 1 vol. grand in-8° avec 117 figures, dont 5 planches hors texte, broché 10 fr.
Relié avec luxe, fers spéciaux 13 fr.

Notions générales de Géologie, par M. Edmond Hébert, membre de l'Institut (Académie des Sciences), professeur de Géologie à la Sorbonne. 1 vol. in-8° avec 54 figures dans le texte. Cartonné.. 2 fr.

Traité de la culture fruitière, commerciale et bourgeoise, par M. Charles Baltet, horticulteur à Troyes. 1 fort volume avec 352 figures dans le texte. Prix 6 fr.

La Culture selon la Science, Échos du Champ d'expérience de Vincennes, par Henri Blondeau. 1 vol. in-18 2 fr.

Les Métaux dans l'antiquité et au moyen âge. — L'Étain, par M. Germain Pabst. 1 vol. grand in-8° avec 12 planches hors texte.
Broché 10 fr.
Richement relié 13 fr.

Le Diamant, par MM. Henri Jacobs et Nicolas Chatrian. 1 vol. grand in-8° avec 20 planches hors texte à l'eau-forte, en chromolithographie, en héliogravure, et 30 gravures sur bois, représentant les plus beaux bijoux en diamants exécutés depuis l'exposition de 1878.
N° 1 à 15 sur papier Japon, avec épreuves avant la lettre 200 fr.
N° 1 à 50 sur papier spécial, numérotés 60 fr.
TABLE DES MATIÈRES

CONTENUES DANS CE CAHIER

Article n° 3. Crustacés rares ou nouveaux des côtes de France, par M. Hesse.
Article n° 5. Le procédé opératoire de la sangsue, par M. J. Carlet.
Article n° 6. Recherches anatomicques et physiologiques sur le mécanisme de la respiration chez les Chéloniens, par M. Charbonnel-Salle.
Article n° 7. Recherches sur les affinités naturelles des Poissons malacoptérygiens abdominaux, par M. Vaillant.

Table des matières.

Planches contenues dans ce cahier.

— 5. Pandare de l'Aiguillat.
— 6. Pandore de divers Poissons.