
Church of Emacs 2.0

A sort of Vatican 2.0 for the Church of Emacs

Third Draft Version, Sept. 2018

License: Creative Commons CC0 1.0 (Public Domain)
http://creativecommons.org/publicdomain/zero/1.0/

Preface: Short Books

I've written a few short books. I wrote an extensive tutorial
about basic programming with 20 short chapters, which
years later turned into a new programming language/dialect
and a second book (and one or two other dialects as well.)

I've written a short book about the Free Media Alliance,
another about holographic learning-- and obviously I've
written this one as well.

These are not intended to be incredible feats. If I wanted to
spend a lot more time, have something more professional, or
impress harder-to-impress people, I could spend a lot more
time writing longer books. But that's not why I write them.
These books start out as rambling posts online, which reach
a point where I say "Alright, obviously you're not going to
shut up about this until it's a little book."

Some may even dispute that it's a book. Call it whatever you
want to, there's a place that still sells "zines" for $10 each
that use 10 to 20 pieces of paper stapled together. I go for
that form factor (I have yet to actually paginate for that--
ebooks are so easy these days) though some of these titles
would take more pages. I'm just going to call this a "short
book" for now.

Everything in it is in the public domain, so if part of it is useful
to you-- grab that part, and copy it somewhere. Thank you.

Chapter 1: Why Even Bother?

The GNU operating system works like a charm. It is being
used to write this book. I stopped using Windows on any of
my computers more than 10 years ago. Since this is my first
book to the free software community in particular, many of
you went Windows-free and Apple-free ages before I did.

I don't compile my own operating system. I used to run a
server. I used DOS and Windows 3.0, and I know what a
truly unstable operating system is like to use, (though I've
never experienced the joy of line editing over bad phone
lines with a teletype.)

I have on more than one occasion used binaries from foreign
distros, as if I am not dooming the potential uptime of my
desktop to something less than 2 years. I used to be one of
the people who (rightfully) frown at this. But I do it anyway.

There are many reasons to promote free software, other than
purely for free software's sake. The internet is the largest
library in the history of mankind, at a time when companies
like Amazon pose an existential threat to libraries. The
increasingly digital, increasingly fettered computing that
Richard Stallman predicted lends greater credence to his
warnings all the time. He is fundamentally correct: without
free software, our society is shackled by its own 1's and 0's.

Normally, this is where a critique of the FSF, free software or
Stallman himself would turn from the nod to his legacy to all
the reasons he's no longer relevant. We have open source,
Microsoft loves "Linux" (even if they spelled "GNU" wrong)
and Firefox (sorry, IceCat) is good enough.

In the endless debate about why you should replace the
name "GNU" with the name of a kernel, a very simple
solution is offered-- share credit with a brand used
increasingly to attack and undermine our digital freedom.
Yes, Linux is a fantastic kernel. Even though the BSD kernel
has some major, impressive advantages, I favour hardware
support and software support, so Linux is my favourite kernel
in the world.

Open source tells its story from its own perspective-- by their
criteria, we have already "lost" and should just give up and
cede to the Linux brand. But the truth is, we don't measure
success (not primarily) in marketshare. It would be silly.

Our success comes from setting goals that move us closer to
freedom, and meeting those goals. Thus while we succeed
year after year in meeting goals, open source paints that as
a failure because we aren't as successful at the goals they
consider more important. This is sort of like saying that
Michael Jordan is a failed athlete, because he sucks at
baseball.

Quite understandably, the Free Software Foundation is
structured around skilled coders, a few large sponsors, a
very large number of smaller sponsors, and the GNU (free
software) ecosystem. Open source is structured around

corporate monopolies, and organisations that want to be
cozier with them. For a while, Bruce Perens thought this was
a good way to promote Free Software. Not long after he co-
founded the Open Source Initiative, he resigned with an
open letter entitled "It's time to talk about Free Software
again."

The goal of open source is to eclipse free software. It has
tried, for many many years, to reframe free software as the
older, clumsier, boring version of itself. But only the free
software movement can ultimately set the goals of the free
software movement. This book will set exactly zero goals for
free software. It will offer ideas you can use, and outline
several things that "we are already doing."

Perhaps those ideas can be done more, or something. But
the ideas in this book are all suggestions.

With the increasing number of problems that free software is
applicable to as a solution, the first suggestion this book will
make is that free software find a way to "build out" from the
core of what it already does. The words I put forward in my
latest internet rambling were something along the lines of:

"Find a way to double the FSF's success, with less than
twice as much funding."

Easy enough to say, right? But this book will explore ideas
about how to build out, and how to possibly double the
success of the FSF.

Hopefully it will also show that more is at stake than getting
closer to a world where all software is free as in freedom.

Chapter 2: Trolls Rule The Earth

If you want to change the world, you have to understand it.

I like to think there are two kinds of trolls-- the rarely-
encountered good troll, like a cute harmless prank (or clever
art installation) played on you by a true friend or peer; and on
the other hand the better-known, evil awful person, who tries
to suck the soul out of you one jerk-move at a time.

I'm pretty sure most people still think of narcissism as just an
inflated sense of self. That definition may have validity but is
not too good, when every idealist is trying to find some way
to save the world. Oh, you don't want to use software that
doesn't include source code? Boom, you're a narcissist.
You're vegan because you hate plants and want them to die?
Narcissist, obviously.

The kind of narcissist I'm referring to instead, is the sort who:

1. pretends to care about you or other people

2. misquotes you and speaks for you and gaslights you

3. uses smear tactics and tries to intimidate you, even as a
response for anything they dislike about you at all

4. constantly accuses you of things they are doing
themselves-- then says they were just kidding, lighten up

5. plays a hero, pretends to care, but whose actions never
match their words

6. plays people and groups against each other, often over
incredibly insignificant faults

7. has consistently different standards for what they will
tolerate vs. what they will dump on you

Narcissists do not respond (initially, later on, after repeated
attempts, or under any circumstances whatsoever) to logic or
honesty with logic or honesty. They only ever double down
with fallacy and lies. Although people say "don't feed the
troll," what they don't tell you is that the thing you're feeding
them is your happiness and well-being.

This is not just about trolls-- Narcissism explains most of the
ills that society has. People think that narcissism is rare, but
it is not as rare as many assume and we are creating more
of them with a society that is perfect for narcissists. Believe it
or not, I don't think selfies are so bad. Prior to camera-
phones, they were known as self-portraits.

The real problem with Narcissism is just how many people
out there are lying by default, how good they are at lying, and
how great they are at weaseling out of any effort to pin them
for it. You aren't just wasting your time going after
narcissists-- you're wasting your life.

When feminists talk about "Patriarchy" they are describing
male narcissism and narcissistic success. I think the reason
that males happen to dominate society (at least historically)
is that males dominated society (at least historically.)

Historically, the combination of male narcissists, male-
dominated politics, and male armed forces meant that men
dominated society by default. I personally reject the notion
that male narcissism is somehow a "naturally male" or
gendered trait-- any gender domination in society is a cultural
habit reinforced by differences in physical strength. It's not
because "men are just like that."

But narcissists of all genders are "just like that." I've
encountered vicious female narcissists, I even nearly married
one.

Though they may not always appear to act in groups,
narcissists do swarm together. If there's one nearby that you
can discern, there are often others lurking around. They feed
off your emotions and off the imaginary things they attribute
to your feelings-- whether good or bad.

But narcissism helps explain a lot of things-- from non-profits
that care more about a fancy, decked-out top office floor than
the cause in their mission statement, to the cloying but empty
promises in any major political party, to one-sided friendships
that seem to always go nowhere (or go crazy) no matter how
you work to nurture them from your side, to arguments that
start out frustrating and become surreal over time and
iteration.

The only protection from trolls is to starve them, and trolls
are constantly trying to make good people look like trolls. No
matter how many anti-bullying campaigns you run, how
many people you ban, how many misguided zero-tolerance
policies you write, trolls will thrive if there's food around.

Until the day when everyone educates themselves better
about clinical narcissism-- and stops trying to win the
argument that a particular troll has it.

If you take down everyone who displays one or two
narcissistic traits, you will also stop their victims. You want
three things for a victim of narcissistic abuse: You want to
give them an opportunity to heal, You want to give them
room to speak that the narcissist tried to troll them out of--
and you definitely, definitely want them to fully understand
why it is self-destructive to try to go after the troll either
directly or publicly.

Turnabout is not fair play-- not just because of karma or
some perfect morality-- but because chasing after the troll is
just another opportunity for the victim to be abused further.

Many people think this is just about protecting emotionally
fragile people's feelings-- or creating a "perfect" code of
conduct, or that this is just an opportunity to squash more
free speech.

Unfortunately, it can be all those things. And that's a very
substantial reason why a global understanding of narcissism
would result in a better world, better environments and
communication online and offline, less perceived need for

zero-tolerance policy and censorship and controlled speech,
and greater harmony and success.

If you critically examine the news and advertising, we are
constantly being played against each other as a society.
Corporations do this because it makes us "better consumers"
by their definition of "better." (Malleable.) So don't think for a
moment that trolls are just some obnoxious kids on an
internet forum. Trolls create and sustain monopolies, they
use marketing to psychologically manipulate the public, and
they create a society in which we cannot work together to do
anything meaningful against them.

Understand that power, and you can learn to feed it less.

Will using a fully free operating system help? By no means
was all of this said just to sum it up as "use GNU," but yes--
a free operating system would help substantially and in ways
that are harder to explain if you aren't already using one.

Using free software, unlike using "open source" is a political
and ethical act. Using free software promotes freedom (and
choice as well) and it teaches that sometimes, "the shiny" is
actually just poison.

That said, there is a lot more to freedom than just software.
So many things run on digital platforms now, that the
relevance of free software to other (more conventionally
though of) freedoms is understated. This chapter is not just
about free software-- it is about free society and a better
mankind.

Above all, it is most certainly not a call for more censorship--
but instead, an idea that may help people realise why more
censorship is not needed (and wouldn't help much anyway.)

Narcissism is not just male or female, left or right, rich or
poor, eastern or western. It is a fundamental evil that has
plagued humanity for millennia. But between overpopulation,
extremely scientific marketing and global communication, it is
very likely that the problem is worse than ever in history.

Chapter 3: GNU Who?

What if I told you that GNU is already one of the strongest
brands there is? I mean let's do like John Lennon for a
minute, and compare it to a cross. If someone is wearing a
cross, odds are, they're a Christian. They could also be
Celtic, or in a rock band. Or perhaps hipster irony reaches a
new plateau and they start wearing them, too.

You often can't tell what denomination/sect or beliefs a
person has just from a cross, but if someone calls their
operating system "GNU/Linux"-- that already says a number
of a specific things with very good likelihood.

While this is a slightly tongue-in-cheek exaggeration, it's not
entirely untrue. Brands start with an image, create some
language around it, and then hitch every concept they want
you to associate with it to that brand.

The vast majority of the time, such a brand is merely an
image-- a face on something that may not be very honest.
You learn to associate deeds with that brand, and when
those deeds are well known and go against your core values,
the owners of the brand try to untarnish it and make it look
good again.

The way the FSF maintains their brand is to try to live up to
what it stands for, and to do what they claim. I defy you to

think of five brands that do a better job than that. So I do
think GNU is a very strong brand, though with that said-- if I
put the GNU head on a laptop I still expect some people to
think it has something to do with a rock band. I used to think
Tux was cute too, but after my experience for the past few
years he's not so cute anymore. I don't need Tux in my life.

Before Vatican 2, greater (more literal) emphasis was put on
John 14:6. Now the church teaches that it won't only be
Catholics (or Christians) who find the path. Open source
claimed that it would add another path or paths to freedom,
though it really hasn't done that. What it has done, is paved
the way for Microsoft and Apple to further co-opt free
software.

Stallman however, acknowledges that freedom is (obviously)
about more than what he and the FSF are working on. There
are other paths to freedom, even if free software is an
increasingly vital component of freedom around the world.

So where we start first-- and what we get from starting there,
depends on who we are and who we "want" to join us. I say
"us" in a deliberately vague fashion. I am a free software
advocate. I advocate that we use more (and more and
increasingly more) free software. I recommend that we refer
to it as "free software" and I explain that saying "GNU" lets
people know where your priorities are.

People who say "GNU" are far, far less likely to let you down.
It's not magic-- it's just a weird brand that people who co-opt
free software don't like to be associated with. We are lucky,
because they (mostly) make it that easy to tell who's who.

Does calling it "GNU" mean you advocate free software? If
you advocate using the GNU operating system, it's a great
start. I use it all the time, it is honestly the best system I've
ever used, and for the most part it keeps getting better. We
have about 3+ years of setback now, thanks to redix. We
continue to provide alternatives to redix-- more than I knew,
and I try to keep track.

What is redix? Redix is every software-based threat or
setback to free software that the FSF does not recognise. It
is especially software whose fans tell you that "you will have
no choice" in using it-- and who try to stop you from removing
it. The unnecessary "cashew" in KDE 4 is perhaps the
mildest possible form of redix, parts of GNOME are redix,
and practically everything freedesktop.org does is redix.

Redix is not posix, it is not a posix alternative-- it is a
parasitic posix replacement that guts posix from the inside
and replaces it with a freely-licensed monopoly.

"Ridiculous," the FSF could say. If it is free software, it
cannot be a monopoly. We all know that doesn't apply to
obfuscated source code. We know that doesn't apply to
compiled binaries without source. We should know that it is
possible (and undesirable and a problem) to create freely-
licensed code designed so that:

1. it is not practical for the majority of distros (including FSF-
approved ones) to isolate its components.

2. it has many parts, many of which you do not need or want.

3. it is not designed in a way that a community can practically
maintain it-- it can only be practically maintained by a
monopoly with paid volunteers.

And above all-- it doesn't only fail to go forwards in these
regards, but it actually takes existing components and goes
backwards.

Systemd is just one example of redix, it is the redix flagship.
It puts too much of your computer at the mercy of systemd
developers; all arguments that sidestep this instead of
addressing it are beside the point.

The license is beside the point. The number of files the
source code is placed in is beside the point. Systemd means
less freedom-- and the authors snidely explain that not only
do GNU/Linux users not have a choice, but BSD authors do
not either.

Again, with narcissists the words and the actions will never
match up. Lennart lies about Systemd. No matter what logic
you throw at the community that supports it, they will lie and
reframe the argument for years on end. After all that, they will
blame "neckbeards" who "dont want change."

Until you have dealt with and learned enough about
narcissists (a weeks research should be plenty for this
purpose) then you may not ever understand how or why the
people pushing redix are so diabolical. But such people are
common in politics, common online, too common in free
software, and extremely (unbelievably) common in open
source.

Redix is not a generous gift for you to be thankful for. It is a
well-designed effort to take control from the community, and
give it away to billion-dollar corporations who like monopoly
and control. And if that's not a threat, then we need
something additional that's very much like "free software."
But it would likely suffice, if the FSF would not neglect this
matter for one more year (2014 to 2015, they should have
said something better about it) and take this seriously.

Let's be clear about this-- the FSF is not obligated to do
anything about it. The only reason they "should" do anything
about it is if they don't want to cede more control to
monopolies-- which is somewhat of a given. So saying they
are "obligated" is entirely wrong. It would simply be a really,
really good idea to stand up to this.

"Systemd is free software" really misses the point this time.
Yes, you can design free software that is truly bad for free
software. Yes, you are "free" to do that. No, it should not be
supported by the FSF. Not when the authors brag about how
you don't have a choice.

That sort of gloating should be a huge red flag to any free
software advocate that something is amiss-- You've heard it
from GNOME fans, you've heard it from Systemd authors,
and you shouldn't tolerate a coup to threaten the users
freedom, no matter how it is licensed.

If someone threatened to put a vulnerability in the kernel--
and then they submitted a kernel (source) patch, and they
claimed the patch contained no vulnerabilities-- but it was
terribly written, had many functions you didn't want or need,

and made it much more difficult to maintain or configure the
kernel as you had previously, setting things back for years--

Would you then accept the "neckbeards that don't want to
change" argument after all that? From people who continue
to insult your intelligence and mock your philosophy of
freedom? So why would you ever accept Systemd?

Still, it is extremely important to understand that Systemd
really is just one example. Because this is exactly how
monopolies will continue to undermine and reduce the
viability of free software-- gradually.

After Systemd, Github users were scattered. Did every coder
5who left Github have their project (which they may not have
owned, but only participated in) folllow them out? Purchasing
Github was like kicking a very large anthill-- yes, there are
other places to go.

No, the percentage of "deaths" was perhaps low. But the
colony will not get back the time they lost, the damage was
done before the merger was complete. They knew it would
divide much free software from some free software and
some open source.

There are very strategic things being done to fight free
software. As with narcissism, the happy-faced campaign
does not match the actions.

The playbook is public-- because it was made public, you
can read Microsoft's plans to destroy free software. You can
find them through Wikipedia. And it's time that people worked
on some "Anti-Halloween" documents (in public-- because

they too will be leaked anyway, and more people can work
on them if they're public) to address the modern threats to
free software.

Yes, the FSF will certainly respond to parts of this head-on.
It's what they do. But although you can have free software
without posix, if they destroy posix then you have lost a lot of
the glue that helps hold the GNU/Linux ecosystem together.

When Torvalds retires, it is possible that GKH will take over.
The Linux ecosystem is antagonistic to free software to the
point of rewriting history (or gently coaxing or at a minimum
allowing others to do it for them.) It is too cozy with Microsoft
and it smears (via Torvalds himself) all free software
advocacy.

That's not a minor problem. It should no longer be called
"GNU/Linux," but as long as Stallman disagrees, of course
we will probably all call it GNU/Linux. Personally? I think we
gave them a fair chance at a compromise and there's no
shame in rescinding the offer. The actual name of the
operating system was always "GNU." The "/Linux" was a
courtesy, a concession, a compromise. But as RMS is the
one who made it, he may certainly disagree.

We can't control what other people call it. But that doesn't
mean it's a bad idea to ask people to call it "GNU," because
when they do (to this day) it shows what matters to them. It
works.

But don't think just because Torvalds is giving GKH the
hardest time of anyone, that he isn't grooming a potential
replacement. And understand that politically, when GKH

decides what goes in the kernel, it's probably going to get
worse, not better.

Of course the FSF will compile its own kernels, everyone
knows that. Non-free software won't make it into Trisquel. But
if the design of the init can become more hostile and less
supportive of freedom, so can the maintenance of the kernel.
GKH is not an ally. Torvalds isn't either, but even if you don't
like him we might all miss him when we meet his
replacement.

Speaking of replacements, how is the clone vat doing? Like
him or loathe him, Apple had only one Steve and we have
only one RMS. Do I think RMS is infallible? No. Successful?
Beyond his own dreams and some of ours. Clever?

When I was a kid, I thought Edison was purely amazing.
Edison was in so many ways, the Gates or Jobs of his day;
he took ideas and turned them into money and advanced the
state of technology. To say the least.

But apart from the fact that this was not philanthropy-- it was
not always advancement. Many years before Bill built an
empire on them, Edison practically invented the EULA. And
He controlled the film industry with patents, of all things. And
with actual thugs. I am not a fan of Edison or Bill Gates
anymore-- but let me say that Richard Stallman (for any
faults he may have) is more like the man I wanted Edison to
be than any other living person I can think of.

His story is much more interesting if you think of him as the
person who (more than anyone) has spent most of
MIcrosoft's existence standing up to them and building forces

against them. So it is wise not to underestimate him. I try not
to. But he is still human, and there is still only one. So if we
cannot clone him (and my hopes are not high) then we need
more people like him.

My list is Ben Mako Hill, Kat Walsh, Alex Oliva and Denis
Roio. These are the four people I know of that I think are
most likely to step up (and Oliva and Roio are unlikely, from
geography alone-- also other obligations) if Stallman isn't still
doing this at age 80 or 85. Perhaps you know others.

More may come along, and more ought to-- let there be more
than this number already waiting to lead free software
against its greatest challenges yet.

Because creating GNU was just the beginning. There are
many, many more things that free software can accomplish.
We finally have a viable, AGPL alternative to YOUTUBE.

You don't ever need Google to host your videos ever again
(Obviously, you won't find the VEVO or Sony labels coming
to PeerTube. So that use of Youtube hasn't changed.)

Mastodon had potential. Unfortunately, the community
wanted to control speech more than it wanted to give users
tools to do that themselves-- so depending on the instance, it
is more like Reddit than the killfile in your email client.

I think there will be an increasing number of problems-- even
more than that, an increasing number of opportunities, that
the FSF will feel unable or unwilling to devote time or
resources to.

To capture these opportunities and deal with these problems,
I recommend "building out" the free software movement into
more organisations.

The FSF will not be restructured. The other organisations do
not need to be officially recognised, (the community can
decide) nor do they need to compete for monetary donations.

Full disclosure: I have my own minor free software
organisation. It does not compete with the FSF for monetary
donations (it does not accept monetary donations at all.)

What can your organisation do without monetary donations?
All kinds of things:

* Research and practice new ways to advance free software

* Offer software and/or documentation

* Provide educational tools, tutorials, and hosting / social
interaction

In the United States for example, unless you file a return you
need to be certain that your organisation does not have
assets that reach or exceed $5,000 or that your organisation
does not dispose of anything reaching or exceeding $2,500.
Those are the numbers I recall, do look into this if your
organisation has any assets at all.

Starting a non-profit corporation (501c or not) is cheap.
Keeping it running is at least more expensive (in time or
money.) But if you don't collect dues or have assets in it, you
can probably run a small computer club (a regular meetup in
person or online) without incorporating.

Organisations can also work together. Like two cores lending
CPU power to the same application, two small organisations
with a related cause can focus on different aspects of the
larger goal. One can focus on making free software more
fun-- another can focus on fighting corporate FUD. Still
another can address things that are lacking in modern
computer education.

Without any real budget, the most you can do is provide
something with a name, and your time-- and time from your
members. Theoretically an organisation should be able to
run on volunteer time only, though if you are doing anything
that requires insurance... either way, maybe look into it.

Operating as a non-profit with a budget and a number of
members that have to pay to join, the FSF is likely to focus
on what it can afford in those terms. SFLC is a 501(c)(3) and
helps free software developers, so if you want a budget and
you want to file, you can still start a 501c organisation if you
have strict requirements for membership and meet other
criteria.

But personally, the only "donations" my organisation is
looking for are the occasional time, feedback and (especially)
free software and other libre works (such as free-licensed
OER materials, writing, music, graphics, websites, etc.) Even
links to such works are appreciated.

More fansites for free software would be great. A well-
maintained (not full of dead links) listing or webring of such
sites would be great. I realise webrings are no longer in
fashion. But our command line from the 1970s is useful.

Chapter 4: Teaching Everyone How To Code

In the decade that the FSF was founded, computer
education was not yet based on applications. By the 1990s,
education was moving towards application training, which
meant two things: computer training became a lot more
superficial, and it better served the market for proprietary
software.

Computers are multi-purpose machines, and applications
focus on specific tasks. This means that if your education
shifts from teaching about computing to training to use
applications, you also move from teaching something multi-
purpose to teaching something application-specific.

This is fine of course, if all you intend to do with the computer
is use those specific applications. This point should bother
every free software advocate. We are trying to give people
control of their multi-purpose machines back, and they
aren't even taught what they can do with that control.

The essence of computing is not applications, but code.
Although it is reasonable to assume that most people will not
become skilled application developers, the fundamental
understanding of computing is still missing for anyone that
hasn't learned how to code.

Coding in one language to some degree teaches much of

what someone would have to learn to code in other
languages. So when Silicon Valley initiates their teach-
everyone-to-code schemes they are gambling with the
compromise that was made to education in the 1990s.

If everyone learns to code, then everyone gains some
understanding of how to code in other languages. To a small
degree, they get back a part of their understanding of what
power they really have.

Nonetheless, education is still focused on teaching a lot of
proprietary software. If free software advocates make it a
goal, there is no reason we can't create "free software coding
schools" (they will be cheaper if they're virtual. Consider
something less like DeVry and more like Khan Academy) and
stand up to the non-free-laden schooling that teaches people
to compromise their freedom long before they're halfway
through university.

We have such classes online-- we don't have our own
schools, and one should be built. If someone can build
PeerTube, we can make Free Software Academy and send
all of our friends there.

If we do not reach at least high-school-level students with an
education in free software, then we have squandered an
opportunity to teach about freedom at an optimal stage.

If the idea is to reach people as early as possible, then a
practical language that is easy-to-learn as possible should be
considered. Since I have spent many years exploring this
idea, I will share some of my thoughts about implementation.

First, I don't think a single implementation is the answer. It's
a nice goal, but if I had a team of 20 people to work on such
a thing I would split them up into 3 or 4 teams to come up
with 3 or 4 different solutions. Then I would go to each
member privately and ask them which solution they thought
was best, and second-best (this means they must vote on at
least one solution that is not their own) and I would ask them
to explain their choices.

Perhaps the team could then work on the top two choices. I
would also like for developers to try teaming up with
educators (or vice versa) to develop teaching environments
that are closer to what educators really need. This is a great
opportunity for volunteers. Teaching this sort of computing to
educators would also be a great idea.

Of course I don't expect the FSF to do everything. It only has
so much money and so many volunteers. So this is a specific
area where I think additional free software organisations
would be useful-- whether the unincorporated, no-dues no-
budget volunteer-only sort, or the more traditional 501c-type
organisations (or both.)

But along with Free Software, Free Culture, Free Hardware
and OER (I would prefer "FER" but this is ground that free
software has lost to the word "Open" because they have not
done quite enough to promote free culture, despite the
obvious connections and the "free" in "free culture") society
and free software alike would benefit deeply from an
organisation dedicated to free software (coding) and free
culture in education.

You may have noticed that a number of educational
languages exist. This is one of my favourite topics, so I will
talk about some of the options and why I like or dislike them.

First, any progress that is made with drag-and-drop coding or
other existing solutions is absolutely great. Drag-and-drop
coding is a very easy way to code, although we didn't need it
in the 80s. Apart from that, text-based code is easier to share
and it is hard to get a lot of people to take the idea of coding
seriously when the primary objective is to move a cartoon cat
around the screen.

I get it-- you get it, and sometimes kids get it. I am a fan of
the MIT Media Lab and of Logo and of constructionist
education-- I would like more languages that have the
simplicity of Turtle graphics and the flexibility of Basic. And
for years (decades really) I wondered what that would be
like, because I was sure it was possible.

One of the best examples of drag-and-drop programming is
App Inventor. I am a fan, this can be taught in high school,
and it is certainly practical. I have owned several Android
devices (several cheap ones and one very "nice" expensive
phablet sort of device with a high-quality touchscreen) and I
ran F-Droid apps on every single one of them.

I even got a touchscreen laptop to try out the sort of
Javascript-based "apps" I made for the that laptop and for
my phablet, but I finally realised that I hate touchscreens-- I
hate tablets even more, and I really hate Android altogether. I
have probably spent 10x as much time using netbooks vs.
Android.

Thus, App Inventor may not be the best drag-and-drop
programming tool we could use. Something like it, which also
did "standard" GNU/Linux applications could be better. I
would recommend something simple-- something that did not
require state-of-the-art hardware, which ran in the browser,
used javascript, and was stripped-down/light compared to
something like Bootstrap.

I always recommend lightweight applications for education,
because even if your school has plenty of money, countless
others don't. As long as we are creating our own software,
we should be standing against Wirth's law. I realise that
Javascript in the browser is not always the most efficient
choice-- which is one more reason that I don't favour it, but I
did want to put it out as an option.

If your Javascript solution has a backend, now it can do
some nice things I would prefer every coder be able to watch
demonstrated and try for themselves-- like loading and
saving files and loading html/files from other sites that allow it
(not for layout, but for input.) I am familiar with Python,
node.js and CoffeeScript, and personally favour Python
whether used as a backend or by itself.

The first application I ever used on a computer was PC
Paintbrush, at a time when almost nobody owned a mouse.
This is what got me into computers. The second "application"
that kept me interested in computers was a line-numbered
version of Basic with graphics that went as high up as EGA.
When I switched to QB, I gained basic VGA capabilities and
a relatively friendly, GUI-like text interface.

Since I mentioned Constructionism and the Media Lab, I was
very curious what the Sugar platform was like, and because
of Sugar I tried Trisquel when it was fairly new. In the land of
Basic, we often mused about creating "an operating system"
(just a user shell, but we were kids) and Sugar is definitely
Python's answer to the "Basic OS."

As with early days of web browsing and the modern web
browser too, many elements of Sugar can be accessed and
modified with a "View Source" option. Though I feel the
environment is slightly slow and heavy (at least it was at the
time) I think that has more to do with the design than the fact
that Python is interpreted-- which I'm sure is a factor as well.

But the "View Source" feature of Sugar is brilliant, and what's
more, my favourite Sugar "Activity" (I suppose it's better than
"App") by far, is Pippy. I owe Pippy a great deal.

Pippy is the true QB IDE of the free software world. When I
was a fan of Basic, for 25 years at that, I was also migrating
to GNU/Linux (I had finished that long migration about the
time I was exploring Sugar) and spent years trying countless
dialects of Basic looking for the ultimate "21st century"
solution to Basic coding. During this search, I learned to
code in Javascript (for my purposes at least) as well.

When I found Pippy and Python, only Pippy demonstrated
how friendly and powerful Python could really be. I
immediately set out to separate the capabilities of Pippy from
Sugar (not the application itself, but the Python programs)
and I learned how to import Pygame and all that.

Yes, syntactically Python is a little more demanding than any
reasonable Basic dialect. But the "feeling" I only got from
coding in Basic that I knew I would find in a replacement,
was there. Python truly gave me my childhood back.
Learning it felt like the time I first started learning Basic.

Python is already widely used in education, as Basic was in
the past. It is a very good language for education. But in
order to promote free software, I went around telling people
about GNU/Linux and demonstrating Basic, Javascript,
Bash, as well as Python-- and every time I worked to teach
fun Python applications to a friend-- it came up a little short.

I don't really think Javascript is a good first language for most
people-- it is a great second language (even if you learned it
first) and I think Python is a better choice.

But both are case sensitive, and Python has the (sometimes
wonderful) left-hand whitespace thing... teaching Python
(even with Pippy) isn't necessarily as friendly as we can get.

I took everything I learned from these efforts to teach coding,
and put the experience into the design of a simpler language.
And to be sure, I was trying to create both the simplest
language I was able and (if possible) the simplest language
ever. But I firmly believe the way to reach that goal is if more
people try.

I never took a course on writing languages, I tried to create
one in Basic around 2003. And I kept trying; I even made a
fun language in Bash to make it easier to learn how to code
in a language that Python or Bash would translate into Bash
scripts. (It wasn't hard. I just kept it simple.)

I believe the iterations paid off, because I eventually wrote fig
in Python 2. There is a Python 3 version, but I don't really like
it. I knew a Former Nokia developer who also preferred
Python 2. I am a fan of PyPy, and fig works great with PyPy if
you change just two lines of code.

But if there were more efforts with similar goals as fig,

(I was not very familiar with tools related to Docker back
then; though their Fig is mostly abandoned for Docker
Compose now, as far as I know.

fig was originally named "fig basic" and someone whose
opinion I respected recommended I drop the second part of
the name. I actually chose the name based on a logo that the
artist who made the QB64 logo made for another language
of mine-- which didn't get around to using. That logo was a
fig leaf...)

I would happily promote other free software languages with
similar goals and similarly lightweight features. I don't think
we have written the world's easiest language yet, though to
try to teach people how to write programming language, I
recommend writing a "hello world language" first.

A "hello world" program is a program that says "hello, world"
on the screen, which is perfectly useless but introduces
programming just the same. So a "hello world language" is a
language that can only be used to write a "hello world"
program... it shouldn't take very long to write one...

Shriram Krishnamurthi teaches people how to create
programming languages at Brown University, and says that

it's better to write a new programming language on purpose,
since you could create one accidentally by starting with a
simple configuration language-- and that's the worse way...

But after I repeat that I think there are lots of options for this
purpose, I will outline what I consider a very simple language
for teaching:

1, The language I offer as an example (fig) is implemented in
Python 2. It can be used with Python 3 in a pinch, but I don't
prefer that at all

2. Because Python is one of the easier "professional grade"
languages to learn and use, a simple language implemented
in Python 2 makes it very easy to transition optionally to
Python, or to easier to modify it into your own language

3. fig allows inline Python, separated this way:

python

 print "this is python code " * 5

fig

4. fig uses Basic/Pascal(/Bash)-like commands to close
multi-line commands, is not case-sensitive, and does not
require indentation (except in optional inline Python sections)

5. there are fewer than 100 commands, ranging from
rudimentary graphics to getting information from websites, to
opening and closing local files and changing the text colour
using ANSI escape codes.

6. fig runs on the command line in GNU/Linux, BSD, MacOS
and Windows. I ran it on Android once, that was tedious.

7. Pygame is optional. If it is unable to run Pygame, fig does
16-colour graphics using ANSI. The Colorama library (or a
term window that is ANSI-capable) is required in Windows.

fig is designed to be a simple, fun language that can be used
for silly beginner applications, creating utilities, remastering
GNU/Linux distributions, computer art and more.

But it is designed to teach:

1. variables

this_variable = 5 ;

that_variable = this_variable

p = "" : arr ; times 1000 # 1000-item list, all strings

2. input

that_variable = lineinput ;

3. output

sometext = "hello world" ; ucase ; colortext 5 ; print

4. basic math

height = 54 divby 3 plus 7 ; print

5. loops

for p (1, 10, .5)

 now = p ; print

 next

6. conditionals

ifmore (p, 5)

 now = "p is more than 5" ; print

 next

7. functions

function helloworld

 now = "hello world" ; print

 next

p = helloworld

To compile a fig program:

$ fig hw.fig # you can rename or copy fig46.py to /usr/bin/fig

$./hw.fig.py # fig adds .py but you could rename this "hw"

Nearly all the punctuation/syntax in fig is optional; only
"quotes for strings" and # hashes for comments are required.
fig ignores the = and ; and also allows |

nl=10 ; chr

introducing_bash="ls | grep fig" | arrshell

now=join introducing_bash nl | print

So this probably isn't your cup of tea-- but like I said before,
with input from other educators you might design the best
educational language ever.

For the same reason I reject the idea that school (especially
mandatory introductions) should just teach proprietary
applications (as used in industry) I reject the idea that simple
educational languages are a bad place to start.

They can make it easier to learn the fundamentals of coding
and transition those interested (or required) to learn more
complex languages, and earlier languages can be more
forgiving of syntax errors if there are fewer places to get the
syntax wrong.

Maybe you don't want to go the "optional syntax" route. The
goal was to create a Turtle Graphics like language with as
little syntax as possible.

My first compromise was to add an optional colon for Basic-
style command separation. I added a semicolon as well. I
added a few others, including parentheses. Even if these are
not required, they help the coder learn and think about
syntax even when it's not required. They also help make
code look nicer and more organised, sometimes.

I have (recently) written a friendly introduction to computing
concepts that includes a simple introduction to coding using
fig. It mostly focuses on concepts, not code. fig and this book
(and the book I just mentioned) are in the public domain via
the CC0 waiver.

I have also read the warning of Bradley M. Kuhn that public

domain software feeds proprietary software. I am not sure
what percentage of the time that is true, but it is a lot less
than 100%. I understand the goal of free software to produce
copylefted works, and that isn't a bad idea. I have read the
FSF pages on when to use the LGPL, etc. and I am pretty
certain there is a lot of trivial code out there (vs. elaborate
applications and operating system components) that doesn't
feed Microsoft and Apple.

For elaborate works, I certainly understand why free software
would want to go copyleft with GPL 2 or later, or the AGPL.

I got into fully-free distros via Trisquel, and into Trisquel and
Python via Sugar. I got into Debian via their stripping of non-
free code from the kernel, paired with a bug that likely
destroyed one of my drives years ago.

There was a problem with power management and some
types of ATA drive, which Debian was swift to counter with
one or two lines of imperfect code (it just called hdparm on
startup) and the distros that decided to do nothing left
unsuspecting users to watch their operating system destroy
their drive.

I am certain the number of victims was few. Nonetheless, I
was watching the start/stop count spiral off the chart, and
when I applied the fix it calmed down (though it was too late.)
Back then, I did not have a whole lot of drives, but software
is imperfect and what can do you?

Nonetheless, I noted that Debian took care of this and other
distros opted to WONTFIX and that sort of thing. The reason
was the fix wasn't perfect and "might not" work on all

systems. Well phooey, I switched to Debian. It was closer to
libre than what I used prior to Trisquel and it wasn't
destroying my drive. It wasn't that I couldn't apply the same
fix to a Trisquel machine-- it was that no one else was willing
to do anything about this. Just let the users hardware die. So
I left those distros behind. This was many, many years ago,
and I was happy with Debian for quite some time though I
continued to try other distros.

When I finally left Debian, it was after rc.local stopped
working and I couldn't figure out why. I wasn't running stable,
so at first I was like "Hmm, alright. Well, this is odd but it's not
stable, I guess this sort of thing happens."

Note I was running stable on all machines except one--
because I chose to run a single machine with a more up-to-
date Debian, I got early warning about the thing that was
stopping rc.local from running.

When I found out it was a different init system that had
installed without warning-- I mean, Debian updates tell you
when there's an update to foreign time zone info, why (other
than politics) would they not pause the installation to let you
know that they are removing and replacing your init? That
was just shoddy.

I learned everything I could about what was going on, and
decided to leave Debian over it. It was a few months before I
found a replacement for what was once the most reliable
operating system of all time. I still can't believe that the FSF
isn't treating it as a threat-- however, the damage is done
and even if the problem went away next week, free software

was set back for at least 3 years by this. How can the FSF
not realise and condemn the goals and arrogance behind
this thing? They too are affected.

Either way, Before that happened, I was promoting Debian
by putting it on machines that people didn't want anymore (I
would get them free) and then giving those machines away
to people having computer problems. "My computer isn't
working." "Here, try this one." "Hey, it works!" "Keep it." I
wasn't the first person to do this, but this is the easiest way to
get people to use free software.

https://freemedia.neocities.org/zero-dollar-laptop.html

Although I wasn't using an FSF-approved distro, I was
getting them away from a fully-non-free OS, and I rarely
installed Adobe plugins (I loathe them and don't touch the
things on my own systems) nor did I ever recommend the
non-free repos (which typically weren't added.) So if you
aren't going with a fully-free distro, this would be the next-
best thing.

Since I no longer believed in (or wanted anything to do with)
Debian, I needed time to let the alternatives come up to
speed. One thing that I really liked about Debian was that I
could download their source DVD, copy it onto the system I
was giving away, and satisfy the GPL without gobs of server
bandwidth or burning large DVDs. Install, copy the source,
DONE!

Debian was nice about that. I'm afraid most distros don't

make it that easy (Yes, Trisquel is good about this.)

I really have to say, that if it is your desire to distribute
operating systems with only slight modifications (and not to
the source but to binaries) that most people still (even those
that care) still do not understand how to do this. Most
communities that produce distributions are very lax about it.
Those that are strict are sometimes just as unhelpful.

I have added Bradley M. Kuhn's guide to copyleft:

https://copyleft.org/guide/

to the Free Media library, but even with distributions like Tiny
Core Linux which were born of a desire for greater GPL
compliance (Tiny Core rather than DSL) it is not always
obvious to people how to comply other than "compile it
yourself." I realise there are people who understand how this
works, but let me explain what I mean:

Let's go back to my example about Debian. I used to
distribute Debian on gratis hardware installed from their
LXDE hybrid (CD/DVD/USB) ISO. The source DVD had the
same name (close enough) with "source" or "src" in the
filename.

If I installed Debian this way, I felt with confidence that I was
complying by also copying the source DVD to the hard drive.
Don't want the source? Delete one file. Alright, so now I'm a
good (pretty good) free software person.

Props to Trisquel-- when I did this years later with Debian, I

got the idea from back when I had gotten a Trisquel source
DVD with my FSF membership card.

When stopped using Debian, I was hoping to do the same
with Devuan. While I was migrating and waiting for Devuan
to mature to that point, I worked on other things. This
included fig, so that I could continue to teach computing and
about free software while my primary operating system was
being overhauled and repaired.

But for a system like Devuan it is not so easy to comply as
with Devuan or Trisquel. I once asked RMS himself (and he's
probably going to say I'm misquoting him. I thought I
understood him and I'm doing my utmost to get this right, but
if I misunderstood him it's certainly not deliberate) if I am
violating the GPL by helping people install new packages
after going to all this trouble-- in other words, if i need to
download the sources for them too.

To the best of my knowledge, I can setup a system as I
described doing with Debian, then give it away, then help
them install packages. It would be nice to know a full list of
my options. I have spent some time looking through the
aforementioned GPL guide and I am certain it covers a lot of
this-- but it is 150 pages when I copy it from 1 pg HTML to
OpenOffice, and I did note that Part 2 starts with Chapter 13,
so perhaps I should read from there first before going further.

But when it comes time to modify the Tiny Core distro, no
one thinks this is "necessary." Personally, I've had as much
fun remixing distros as editing program code. In fact, I don't
remix software "by hand." I write scripts that automate

downloading, opening, editing and creating bootable ISOs
from existing ISOs. And as long as I don't distribute the
resulting ISO, I am not violating any license.

How to make it so I can comply enough to be CERTAIN
those ISOs can be distributed is where I get confused.

And no matter how much you know about this, or how
obvious to you, this stuff is confusing. It matters to some of
us. Those of us who care the most are generally asked to
decide between "Don't worry about it" (from those who don't
worry about it) or "Don't bother remixing that particular distro
then. Why bother? There are plenty of fully free distros you
can use."

I am not asking for the free software community to take my
favourite distro and "make it libre" for me. What I am saying
is that if I want to do that, I should be able to do that with free
software. I should be able to take Ubuntu, remove all the
non-free parts, throw in a libre kernel, and have a libre distro.

I am told "it's not that easy" but that isn't what bothers me.
It's the licensing (of the GPL parts) that I want to understand,
and it's complicated for me. Rather than expect the GPL to
be less complicated, I would really like to understand better.
But a lot of this isn't new and this is one of the major
challenges facing free software. It is absolutely easier to
remix an operating system than it is to comply with the
licensing.

And I don't think the free software community "owes me" a
better understanding. They may not even like what I'm doing
with that understanding. But there is a lack here, which

someone could do something about if they didn't want the
lack. And there are people who are more confused about this
stuff than I am-- People with good intentions who think if they
just provide a mirror of the unmodified Tiny Core distribution,
that they are now free to distribute their modified version.

So much of the community of free software users (who
provide support and even friendship to people using free
software) don't know what they're talking about when it
comes to this stuff. They enjoy remixing distributions, but the
licensing goes over their heads.

If I were part of the BSD community I might just say "Let's
ditch the GPL. Let's migrate as far away from it as we can."
And to be entirely honest, I don't think it's worth that.

Instead, between free-software libre compliance and what
Kuhn calls "the most egregious violations" of GPL, including
selling hardware with modified GPL-licensed software and no
source code for even the modifications (let alone the
originals), most re-uses of free software are in this huge,
growing "grey area" of non-compliance.

I am not content (I just can't make enough out of it) to be on
the "Let's just use Trisquel" side of this. Nor do I want to be
mired in non-compliance with the rest of my hobby-oriented
compatriots. I have done "the right thing" when it was trivial,
and I have tried to make progress in my understanding and
my deeds when it is less trivial.

Still, I find this is very uphill. As good as it is to set a perfect
example, I feel that free software has this huge opportunity to
create a small organisation that is devoted to working with

"the middle" and growing, hobby-oriented sector of this non-
compliance. I think it is (sincerely, and not this is not a
critique at all) beneath an organisation like the Software
Freedom Conservancy. I admire their work, but this calls for
something more casual-- something that can devote more
time to "small steps" towards progress, and setting better
and better examples rather than setting perfect ones.

And I repeat that free software doesn't "owe" the people who
exist in this grey area. Similar groups exist within copyright
compliance-- you have people who try to never infringe,
people who do not care at all and are happy to infringe, and I
would say most of society (if we are honest) is in between.

There is a great opportunity to coax a lot of well-intended
people upwards in this, which I honestly doubt appeals to
most free software advocates. It appeals to me, and if I ever
understood these matters as well as Kuhn or RMS, I would
not be leaning towards the "Why Bother? There are plenty of
fully free distros" stance.

Nor would I lean towards "Don't worry about it" or "Let's just
migrate from the GPL." I really like the software that's under
the GPL license. I am not, as the BSD community seems to
be, interested in replacing as much Copylefted software with
non-copyleft as possible (though I do tend to put my own
software in the public domain. I want strict beginners to be
able to share and modify it with zero apprehension.)

I feel it is probably a waste of time to appeal to the free
software community about this, but I do hope to eventually
find people who share an interest-- wherever they are or

whatever they're doing. And whether they like their own
methodology and think it's better to just set a perfect
example or not (it often is) I think it will give free software a
giant boost if the people "in the middle" are slowly taught to
care more and understand better. There will always be
people who don't care at all. But every day I am around
people that care more than they understand.

I doubt I could put it much more clearly than that.

Chapter 5: Other Paths with Education and Free
Software Advocacy

We teach science to everyone not just so they can become
scientists for a living, but so they can understand the world
they live in. We should be teaching (easier, high-school level)
computer science to everyone for precisely the same reason.

Code (done in the simplest ways possible) is the most
obvious interface for teaching those concepts. Code is
merely a symbolic abstraction of what computers do--
computers are merely a functional implementation of what
code does.

Code and Computers mirror each other to the point where
you can implement a CPU as an application, and then run
the same operating system on that application (such as with
Qemu) that was designed not fo the application, but for real
hardware. We can talk about Turing, but this mirror of Code
and Computer is the essence of what he proved to the world.

If the Free Software movement wants a new generation to
supports its efforts, we need to have enough people that
understand how to code and it is certainly preferable if they
spend more (or all) their time coding with only free software. I
learned how to code with a proprietary language-- but it was
a language that was so simple, I was able (without taking a
single course in language design) to spend years guessing

my way into implementing an environment that is similar
enough for my preferences as the language I first fell in love
with-- using only free software.

I was very proud to notice that people with a better idea of
what they were doing used similar techniques and tricks as
the string processing and lookups and even the conditional
structures I used to implement my early "language" tools
with-- I mean, computers are very simple until you get into
the very specifics which are most optional. Those things
that are harder to understand are generally the ones that
vary from Intel to AMD, CISC to RISC and 16-bit to 32-bit.

In other words: options. The fundamentals of computing can
be so much easier than the optional aspects of the modern
implementations. Not that implementing a dialect in Python
isn't modern, just that it needn't be sophisticated. You can
start implementing your first language before you fully
understand programming, or know much about writing
excellent programs-- and I've explored this as a way to teach
coding in the first place.

1. iterate through lines of a file

2. iterate through bytes of each line

3. iterate through tokens derived from bytes

4. process those tokens using conditionals

That may not be a recipe for a great language, but it's
enough to teach a beginner how to experiment and think like
a language author, not just a coder using someone else's
language.

I firmly believe that if we devoted more of our effort to
computer education with free software-- not just teaching
people "why you should use free software" or "why you
should use free software in education" (of course you
should!) then we are going to have more free software
authors and many more free software users.

Since I have already put it into the public domain, I will
include a few concepts from my book on "holographic
learning" in this chapter. This is probably all stuff you know,
but this is stuff you could include on a file in your favourite
distro called "Learning more about computers.html"

As outlined in Chapter 2, the BIOS (or EFI or UEFI) hands
the computer over to the bootloader, which hands the boot
process over to the operating system.

The operating system runs an "init" and/or startup scripts to
get the OS running and to present the user with an
interactive environment (or, to run a server that can be
accessed from another computer.)

It is at this point, between the operating system and the
interactive environment, that we can begin to talk about user
applications. And the purpose of doing so goes far beyond
simply how to use the applications.

The interactive layer of the computer system is called the
shell, and the shell runs applications.

For a command-line shell, the way to run an application is to
type its name. For a graphical shell, you might open a
window or menu that has a representation of the program--
an icon or a name for you to open by clicking on it.

Whether the program name is clicked on, typed in or spoken
out loud, the shell recognises that the name is referring to
something installed on the system, and it tells the computer
to load that program.

Running a program and calling a function inside a program is
a very similar thing-- a program may contain several
functions, such as the to_f function we showed the code for
earlier, and the function will "run" when the program refers to
it by name.

Putting a file that has runnable code on the system will often
let you run it by referring to its name. So using the command
line is a lot like (or is) an act of coding.

When is a command less like coding, or a function call?
When it's a query. If you tell the computer the name of your
browser, whether you type the name or click on the name or

speak the name out loud, this is a lot like a function call. It
runs the code referred to by that name on the system.

The data you type into the google search bar is called a
"query," which is a bit less like coding, because you aren't
referring to the function you want to run-- you are simply
entering data which Google hands to the function or
functions for you.

But ultimately, every process a computer (or internet website
server) can perform can be thought of (or involves) a function
call.

What is a function call? It is simply running a specific section
of code that has a unique name.

The graphical shell, like the computer itself, tends to deal
with rectangles-- numerically, these rectangles may actually
be straight lines:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

And the computer might not care if each discrete point in the
line is arranged in a row, like this:

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

Or if the points are arranged in a rectangle, like this:

00 01 02 03 04
05 06 07 08 09
10 11 12 13 14
15 16 17 18 19

We think: 5 points across, 4 rows down-- the computer may
think "20 discrete points." There is pretty easy math to
convert back and forth either way. The way these points are
numbered and referenced is called "addressing," like it is
with post boxes.

But whether the addressing is in a line or rectangular, it is
basically a fact that the graphical shell deals with rectangles.
Your screen has a discrete number of points across, and a
discrete number of rows down, and each point is called a
"pixel," for "picture element."

When you click on certain areas of these pixels, the
computer is told to call certain functions. This is the basic
concept of how a graphical shell works.

GUIs have different design elements, such as arrows or a
bar you can click on to scroll, menus you can click on that
draw a box and put different items in a list for you to select,

buttons you can click with the mouse to perform a certain
task, or text boxes you can click on and then type text into.

In a web browser, the browser contents can be defined with
document "markup language" such as HTML. HTML can be
styled with CSS, and various aspects of the page can be
defined, altered or controlled using Javascript. Using these
languages, you can define the elements of a GUI within a
webpage.

While a Cartesian graph consists of two such number lines,
including the other half for negative numbers and a vertical
number line (also centred at 0) creating four quadrants of the
graph, in computers the points on the screen are most often
represented only with positive integers or whole numbers.
(and most often including 0.)

0 --|----|----|----|----|----|----|----|----|----|----|----|---- >
(x values)
-- (y values)
--
-- A typical computer graphics scheme
V

Instead of using number lines, we can also use coordinates
in a rectangle to represent the points:

 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4)
 (1, 0) (1, 1) (1, 2) (1, 3) (1, 4)
 (2, 0) (2, 1) (2, 2) (2, 3) (2, 4)
 (3, 0) (3, 1) (3, 2) (3, 3) (3, 4)
 (4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

A difference between graphics and text is that in terms of
addressing, it is common for the top-left corner to be
addressed as (1, 1) rather than (0,0):

 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)
 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5)
 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)
 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5)
 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

So, if we are covering the top line of our 5x5 screen
graphically, it will be with a line of pixels ranging from (0, 0)
to (0, 4):

 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4)
 (1, 0) (1, 1) (1, 2) (1, 3) (1, 4)
 (2, 0) (2, 1) (2, 2) (2, 3) (2, 4)
 (3, 0) (3, 1) (3, 2) (3, 3) (3, 4)
 (4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

But if we put the word "hello" at the top, it will probably be
from (1, 1) to (1, 5):

 h e l l o
 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5)
 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)
 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5)
 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

Extra points if this stops you because you noticed that in the
top graphical example, we have created a large block for
each "dot" and in the second, text-based example, we have
used characters such as "h" that have a shape which clearly
requires more than a single pixel.

We can certainly do a graphical or "pseudo-graphical"
display of graphical data using large character-sized blocks
of the screen, but "graphics modes" on a computer generally
have finer resolution (for example, HDTV does up to 1080
rows from top to bottom, and a larger number of units
across) and text requires more than one row and column of
pixels.

At the moment this line is being typed, the screen is at a
resolution close to 1920 x 1080, and the characters (if we
take a screencap, zoom in, and count the pixel dimensions of
this character: █) are actually closer to 16x24. We should be
able to get about 5,400 of these characters (1920 / 16 * 1080
/ 24) on the screen at once, if our font is fixed-width.

Getting back to graphics, our example screen can hold up to
5 x 5 or a total of 25 dots, and each one can be any of up to
16 million colours. For this 5 x 5 box, we will just use green:

 (1, 1) (1, 2) (1, 3)
 (2, 1) (2, 2) (2, 3)
 (3, 1) (3, 2) (3, 3)

Ultimately, the means of drawing a box like this is to address
each dot and change the colour information for each of these
dots. Just like the location of each dot itself, the colour is
represented and stored numerically.

Without getting into the way colours are converted into
numbers and displayed as colours, [that would be a great
addition, I just chose to skip it] we can say that everything
that happens visually in a graphical interface consists of
changing the values of the numbers that store the colour of
each pixel.

Before, we said that everything that happens is a function
call, and this is also true-- every function call references or
writes the values of some of the numbers stored in the
computer. To get information from a file to the screen, one
function may read numbers from a file and another may write
numbers to the circuits that change the display.

Chapter 6: distro-libre, Reinventing the bootdisk and
casually remixing free software

Let me make perfectly clear, something I was talking about in
chapter 4-- if you can modify and recompile a GPL program it
should be no problem for you (though somehow, it
sometimes is for some people?) to include your source code
and instructions/scripts for compiling it.

If I compiled all my own software, this chapter would be a
friendly guide about how to compile software instead.

It's not that I've never compiled anything. Sometimes it's
easy. I have a basic understanding of dependencies, I have
modified and recompiled (but not redistributed) xtrlock to
have no cursor. (It's really really easy. And I really don't even
know c to the point where it would help with this, you just
have to understand arrays/syntax in general to make this
modification.)

I would have zero trouble fully complying with the GPL if I
chose to redistribute that modified program.

One of the main purposes of this chapter is to get you to
understand what it's like to be in that grey area of GPL
compliance. Puppy Linux, for one of the most prominent
examples, was once harassed about GPL compliance

(whether by a zealous fan of free software, or just someone
who didn't like Puppy and wanted to cause grief-- it could
even be but I doubt it was both) And you can build Puppy
using the Woof system.

I found the Woof system too complex to use and set out to
remaster Puppy automatically, using a script that runs,
downloads files, modifies them and puts them together
again.

The entire process is automated, and requires no outside
input unless something goes wrong. Usually this is because
something like xorriso or genisofs was not installed, or
squashfs-tools or isolinux was missing. The system uses
Python and standard libraries only, so it can run from Debian,
Devuan, Refracta, Void Linux, Puppy, Librepup and Trisquel.

You change the distro by changing the program-- so when
you have it the way you want, you have an option:

1. Distribute the ISO, which most people will want to do of
habit

2. Distribute just the program-- it is public domain via the
CC0 waiver, and provides full, automated instructions for
people to create you custom "distro" (derivative, spin, pup,
etc.)

I suppose if this were setup as an online service (not my
favourite way to do it, but as a way towards compliance) it
could create the ISO (using about 15-30 minutes of server
time for squashfs) and offer urls to the source for each distro
used. Maybe this is naive-- cheap means of compliance are

essential to all but the extremely serious hobbyists, and that
server would be a second project altogether-- the rest can be
done with a script!

But the option to just distribute a "custom ISO via 150k
script" with NO VIOLATION of the GPL is really nice, and yet
people still want their ISO download. If this script being
available counted as "providing source" it would be
interesting, but probably not the direction anybody really
wants the GPL to go in.

Almost anything people want from a remaster is possible this
way. You want a "new OS?" You've got it. You can put it
together in a week. This casual attitude is alien to the serious
portion of free software community, but I liken it to the days
of the DOS boot disk.

When hard drives were not a given (and with typically just a
1 year warranty, they aren't exactly a given now) we actually
did alright without them. DOS was a very small system
designed to be "just enough" for running your programs.

Of course, "just enough" turned out to be a lot of "fun" when
it came time to extend RAM, load graphics and sound
drivers, and leave enough of that precious initial 640k to the
applications that demanded or required it. Then again, you
could put the OS and some of your favourite programs on a
floppy and-- worried a friend might put it near a heater
overnight? DISKCOPY A: B: and you can create a spare.

Doing that with a hard drive remains less trivial, despite the
history of utilities (including dd) that make it easier to do so.
But with a USB or DVD writer...

I actually "install" my own distro on one machine by simply
running dd with the ISO as the "if" and the hard drive as the
"of." Then I add a partition and put more files on it. I can't
easily update the OS on that one, but it won't boot from USB
anymore and the optical drive doesn't work either.

I can update most parts of that machine in other ways. But
for probably every other distro I've worked with, I've figured
out how to configure grub to load directly from the ISO file--
no dd necessary. (Just be certain you backup your grub
configuration.)

It is just fun to create bootable media. you can put all your
favourite programs on it and run it everywhere. You can write
the ISO to DVD or USB. To this day, I try to fit it on a CD. I
still find CD-only machines, and it is more likely to load into
RAM with room for your OS to run on a 10-year-old-machine.
CD-sized is not an arbitrary "vintage" eccentricity, it is still a
practical limit for some things.

I am far from alone with this, and the thing about these boot
disks is, they proliferate. For better or worse, we just keep
making more. If you do this often enough, it can even serve
as a backup strategy. But even though I once setup my
bootable Trisquel USB with a persistent folder /partition /
something-- a nice option that many people want-- what can I
tell you? It's "not the same."

Settings / configurations and spins are related, but they're
not equivalent. People like to change Defaults. If they don't,
someone does it for them. They recognise the power in
doing this, even if it is less than the power of building a full

unique distro. It's "enough reward" for many, and much less
work. Sure, people who actually create full distros aren't
impressed by such things. But many other people are, and it
makes them happy.

I do not know of any fully free distro that really facilitates this
desire that many free software users have. I am not certain
this desire is one that is widely understood or appreciated by
(or necessarily even fully in line with) free software.

I am however, convinced that this can be better catered to--
once again, whether or not someone is truly interested in
improving this area of free software use/reuse-- and that
doing so will produce a better community that (on average)
cares more, not less about the software freedom goals of the
GPL.

I am not expecting this to go somewhere. But the other thing
I believe it could do is help to bring more distros into GPL
compliance. You may not think we need more distros, but
there are many out there. Just switching to fully free would
solve a lot of free software problems.

Ultimately though, it would not cover all of the things people
use free software for. Rather than argue that not all things
people do with free software are good for free software-- let's
talk about the fact that people have wanted to create boot
disks whenever trivial to do so, from at least 16-bit computing
in the 1980s, to the present.

For whatever reason, most or all of the distros that make this
worthwhile are not as dedicated to freedom as the FSF and
Trisquel. It's probably because the people most interested

in doing this are not hardcore FSF/freedom fans-- but casual
users. But Slitaz, Tiny Core and Puppy can all be brought
into (or exist in) full GPL compliance. I do not like their
kernels (except for Librepup) but they are fun to use.

It is not the non-free software that makes them fun. For
some, it is-- for me, it is the feeling of exploration, of
progressing towards a system that is perfectly tailored (or
close enough) to the needs of the individual user-- but not
only the individual user.

That is a completely unsustainable goal with non-free
software, and it is less sustainable with people who don't
care about your freedom (I don't mean people who have grey
compliance, I mean people who are openly antagonistic to
your freedom, who redesign software you already like to give
you less choice than you started with.)

This is something only boot disk culture can do, and I would
like there to be a confluence of boot disk culture and fully
free software. Librepup is the closest thing I know to that. We
need more things like it.

I would like there to be a distro-libre project, where people
work to make existing distros (especially boot disk distros)
more libre by automatically removing components that are
not free. For full GPL compliance, they can be distributed via
script rather than ISO. But archivists will continue to put
these ISOs up on the Internet Archive. I would love to have a
lengthy discussion with Bradley Kuhn (or any other
interested party, including RMS) on a way we can make this
grey compliance a bit lighter and make progress.

Chapter 7: Moving past lost opportunities with Free
Culture

The founder of Creative Commons is perhaps the world's
biggest fan of free culture, but he was or is on the FSF board
or steering committee. From going on the Colbert Report to
suggesting we call an Article V convention, to running for
President in 2016, Lawrence Lessig (winner of FSF's 2002
Award For the Advancement of Free Software) is a man I
deeply admire. I keep trying to guess what he will do next to
try to further freedom not only for software, but for all
culture-- I suggested he try terraforming a planet with better
copyright laws.

The story goes that Gandhi was once asked "What do you
think of Western Civilisation?" And he replied, "I think it
would be a good idea." I feel the same way about the Free
Culture movement. The only reason I stopped funding the
FSF was I grew extremely tired with this being plastered all
over not just the FSF website, but some related sites:

This work is licensed under a C------- C------ A---------n-N-
D--------- W---- 3.0 l------ (or later version) — Why this
license?

The "Why this license?" part is what irks me the most. The
FSF promotes what I consider an alternative to free culture
that I find as harmful to the movement as "open source" is to
free software. I love RMS, he's one of the most important
people in the world (go back to where I compared him to
Edison and Bill Gates, except the hypothetical GOOD
versions of those) but I absolutely can't tolerate his "works of
opinion" shtick.

You don't need me to go into detail about that, I couldn't do
better than Nina Paley's "rantifesto" about Stallman's take on
free culture:

https://freedomdefined.org/Licenses/ND

My feelings about this have not changed in many years.
Stallman is very simply unfair to the free culture movement
about this. I don't think he deliberately misrepresents them (I
don't know if he has ever deliberately misrepresented a
single person in his life. He is honest to a fault, and that's
admirable) though these apologetics for the most useless
(and meaningless, and impotent) license that Creative
Commons ever made-- a license they should have retired
and started to discourage use of long ago-- are the only
purely intolerable thing I think RMS does.

Of course he's entitled to his opinion! And people are even
entitled to support him. It creates a huge rift between free
software and people like myself, who agree with the gist of
Paley's Rantifesto (and I felt that way before I ever read it.)

Whether or the FSF continues to endorse this license, the rift
is there, and it is unfortunate. I feel strongly enough about it
to deny the FSF funding, because I don't know how else to
protest this in a meaningful way. Through me, free software
has gained several hundreds of dollars towards various free-
software projects. I don't feel at all like a freeloader. I devote
most of my free time towards working out ways to make free
software work better for everyone in the world-- and how to
help the FSF indirectly.

But freedom is an exchange, it is a conversation. I
acknowledge that the FSF can help in ways that are
fundamental, but I do not simply give them all my agency
and let them dictate how to be free. I say this cautiously-- I
am not accusing the FSF of being dictatorial and I realise
that opponents of free software like to pretend they are
easier going, because they replace the FSFs written rules
with unwritten ones.

But the truth remains that freedom is an exchange and a
conversation, and until I feel like free culture has enough of a
place alongside (not necessarily as part of) free software, I
will always think "we are doing this wrong." I have devoted
years to refining and reiterating this argument, and the last
straw was when the FSF kept sending their membership
letter-- also with the ND license.

Here is mail! You can't edit it! I'm aware of first-sale
doctrine and my fair use defense, but honestly this was too
much and it just flies in the face of reason for me. I know
other free software advocates who feel this way-- I meet
them here and there. We just don't buy any of the reasons

that "Works of opinion" should carry a meaningful difference.

But this is supposed to be a constructive book, so I will
mention the places I think there are progress and hope, and
perhaps room for further progress:

First, I am very pleased that an increasing number of free
software platforms are using real free culture licenses. My
organisation really has no place for NC or ND, and I think
where OER commits to free licenses they are making
progress. I also have no time for the GNU FDL, not only
because of invariant sections but because I don't think it is
useful to distinguish between paper copies and electronic
ones for a documentation license. In fact, I think it is harmful.

-- Sorry. What I meant was, The GPL compliance guide is
CC BY-SA 4.0, which is simply great. And LibrePlanet put up
lots of video under a real free license, which means that if
you bother to create transcripts they will also be under a truly
free license. And in one of those videos from LibrePlanet,
Ben Mako Hill said something like: "We [may need to]
distance ourselves further from Open Source."

Given that Open Source is the very womb of redix, I entirely
agree. They have succeeded in selling so much free
software out to the non-free competition, and proven their
true motives. The illusion that Open Source cares at all about
or has anything to do with Free Software should be finally
debunked and proven false at this point.

But they still have their (better) support of Free Culture as a
real feather in their cap-- and that means if you support free
culture as well as free software, you can't help feeling torn

between FSF and open source just a little, even if you find
the latter completely loathesome.

Lessig should be taken more seriously by the free software
movement, first of all. And so should the movement he took
to a completely new level. You can say that free software (as
formerly uncopyrightable during its early days) existed prior
to the FSF. You can say that free culture (in many forms)
existed prior to Lessig's involvement. Though you can't deny
that Lessig helped found and define the free culture
movement we have today.

The free culture movement is too weak and needs greater
support, and if you believe in it at all, you should try to
support it more. Not with money-- with time or
thoughtfulness and above all, with free-licensed works.

My attendance at a free culture event in DC (where I met Kat
Walsh the first of just two times. People spoke of Karl Fogel
by first name only, I don't know if he was there or not-- Kat
Walsh is the only individual from the FSF I've met in person,
which is why I mention her a few times. I'm sure she doesn't
remember me, which is alright-- it's not like we started
chatting every day on Twitter. I've also met the developer of
Refracta in person a few times) convinced me that there are
people who "care" about free culture in the same way that
open source "cares" about free software. And my feelings
about free culture are very mixed, except for one absolute:

I want MORE free culture! And lots more, at that. We
absolutely do not have enough now, and we need to keep
growing that amount. So if you care about free culture,

please-- create more free cultural works. As much as you put
into a fixed medium and are willing to share, put some sort of
free culture license on it. The Free Media Alliance currently
recommends these licenses as best choices:

https://freemedia.neocities.org/recommended-
licenses.html

Note these include both software and cultural licenses.
"Licenses for documentation" do not need to differ from
cultural licenses as they do on the FSF page. OER licenses
do not (as a best practice) differ from documentation or
cultural licenses-- OER (done right) is a subset of free
culture. If you need an obvious example, Thank you again
Mr. Kuhn for using CC BY-SA 4.0. (OER has many others.)

Chapter 8: What to do with this book

I would certainly be thrilled if you took some time to look
through this book, and particularly if you find just one detail
or argument that inspires you in a meaningful way.

I would be just as happy if this book turned into a longer (or
broader) conversation between us, or between more people.

If you would like to refute parts of this book, I encourage you
to do so. One of the main inspirations for this book at this
time is the Trisquel community. I have always taken its
warnings at face-value, and found them off-putting and
dismissive. In short, I have made too many assumptions
about the Trisquel community. I don't like to spend my entire
life living on just assumptions, which means that when I find
the time and patience and faith-- even if I have prior
experience (and I do!) to support my incorrect assumptions, I
continue to go back and check on some things.

I have over the years, been through several iterations of free
software philosophy. I started with Open Source, and spent
years trying to resolve its rhetoric with its deeds.

I came to the conclusion that Open Source is marketing
above all else, and not straightforward or even as meaningful
as it purports to be. It also confuses a lot of good people who
buy into it, which is the obvious reason why not all Open

Source fans are bad people. I also think a lot of the worst

offenders, including Torvalds, put so much into their rhetoric
that they sometimes even fool themselves.

Linus Torvalds doesn't wake up in the morning and ask
himself "How can I fool people into thinking it's 'Linux'?" To
him, it absolutely IS "Linux." It should be more obvious that
he's mistaken, though Open Source is deeply invested-- in
various ways and meanings of the word "invested"-- in being
mistaken.

Every person out there, lives in a pretty cynical world. For
most, it is not a world of their own making, but one that was
"helpfully" made for them to exist in. Not all help is false, not
all disagreement is based on fallacy or misunderstanding,
not all imperfection is worth fighting. But with the exception of
narcissists and the like, every person out there is a potential
ally.

Open Source wants you to STOP what you're doing and
devote all your time to wooing the long tail (of people who
don't care about your cause.) They want you to abandon
your way, and do things their way.

If you take anything I've said here to mean that, just remove
that part. Or reword it so that it doesn't say that to you. Or
just keep the parts of this book (and delete the rest) that
appeals to your own goals in some way. This book is
designed to help, not to push you away from your goals. But
that will only happen if it is understood and used for that
purpose.

I invite you to use this book in whatever way suits you
personally, as well as your own values. But I would be happy

to live in a world where all software is free software, where
all culture is free, and where our motives for doing things
have absolutely nothing to do with monopolies or trying to
unfairly or unreasonably control each other's lives.

Please feel free to remix, add, debunk, improve, or comment
on any part of this book. I hope you will do so honestly, and
thoughtfully. But, I have tried my very best to extend that to
you. I doubt I have done that flawlessly, and I accept that you
are not perfect either. It's something we all have in common.

Best,

figosdev

Sept. 2018

P.S. I've let some of my favourite draft versions go unedited
for years. There were more things I wanted to say. One of
the reasons these are short books is that they reach a
certain point and then I can't stop thinking-- "You know what?
Let's just put it up like this and find out what happens."

BONUS PADDING MATERIAL!

AI -- A futurist's interpretation of the present (not written
for experts...)

One way to think of AI is "A lot more computing-- both good
and bad." For art? Great. For surveillance? Sometimes bad.
Apply it to everything-- people will. And it will be a great
multiplier of things; of all computing tasks, more or less.

Not all at once. And I'm not hyping it, I'm describing the effect
it will have-- as a multiplier:

Another way to think of AI is "enhanced computing." Because
in many ways, it is fundamentally "just computer processing."
Anything a computer does is "just computing." But with AI,
this becomes something more incredible. The scope of what
can be touched with computing becomes richer-- for good
and for bad.

Computing is very flexible, by design. We can actually say
something about AI while being this vague-- it is essentially
like computer processing, except that it can do a little more, it
can do more with more modest requirements-- it may take a
while-- but with home computing equipment you can

suddenly do things that you would expect of companies like
Pixar.

Certainly not at the resolution for a (feature-length) film like
Pixar makes. They will still use large computing farms to get
the job done in a reasonable amount of time.

AI can possibly seem to violate Moore's law, but it won't
violate the laws of physics. If we are doing 1/3 of what our
CPUs can do, then AI will make it so we can do the other 2/3
as well. And we can be really amazed at the results.

But also with "enhanced computing", things that once
seemed incredibly difficult to program are now at least
possible. Not necessarily "easy," but what once would take a
team of 25-50 people (at least) can now be done sometimes
with a team of 3. That's not a general rule, just that some
things that once took many people can now be done with
few, and faster than when it took more people.

Wizard-like stuff that once took a team can now be done by
individuals. So the term "enhanced computing" is both telling
and probably accurate.

And if you want, you can say that what computers could do
already 10, 20 years ago is almost like magic. We know
better, but for me it still feels a little bit like magic.

If you think of Harry Potter-- and I'm a fan of those books and
movies, Ollivander said of Harry's nemesis: "He too did great
things. Terrible, yes-- but great." It wasn't a compliment, it
was an accurate measure. Of course for a young boy who
just learned he was a wizard, it's creepy enough.

AI will do great things. Some of them will be terrible-- but
great. And hopefully more of them will be Harry-like than
Voldemort-like. But really, it will be both. AI is already used to
help kill people. And I don't know how much we are ready for
it. We should be cautious, and know that the best rules we
come up with (like no doing magic outside the school
grounds) won't be followed all the time.

No "Ministry of Artificial Intelligence" is going to be free of
corruption or poor decisions-- nor would it be enough to stop
all bad things that are done with or without approval. Either
way, AI is here.

Perhaps the biggest difference between AI and human
thought is the superficiality and bias. Humans have that
sometimes, in very stupid ways, but we are more flexible. AI
can magnify our stupidity-- think of the old adage about
"knowing just enough to be dangerous." That's AI.

I'm not so much talking about "What happens if we copy
people into AI versions of those people?" I'm really talking
about the potential to try to make AI do what we think we
want-- and getting far worse versions on average.

Because that's going to be very common, even humans have
done this now and again throughout history. AI will lead us to
a greater capacity for such mistakes. Just as AI can solve
things that would take 100 people to solve, it can make
mistakes that would take 1000 people to create.

At least with laws, there's a judge and jury as long as it's not
artificial. We are certainly building corporations that have
more power than a judge and jury do. But AI could do that
too. My feeling about AI politically is still that it lends itself to
many things, but it lends itself best (or at least most easily) to
fascism.

That could be post hoc-- it's corporations and governments
that are the most interested in it, so I could be describing
what it lends itself to most easily by extrapolating it from the
product of governments and corporations working on it. Still--
what are are developing now is like that.

People are trying to think of whether AI will be more good or
more bad, and I'm not arguing for a neutral stance on it. I
would say that if you look at all that computers have done
both for our lives, and also to our lives, computing that is

suddenly enhanced in ways that at least seem to go beyond
the reach of Moore's law is exciting, but also justifiably scary.

What AI does is pattern recognition, and it can also impose
patterns. This is said broadly because that's the broadness
of the application-- you can find patterns similar to the way a
person would, you can impose patterns similar to the way an
artist would. Computers can do that without AI, but not at the
same level as a person.

Today, we are designing software that can do those things
faster and more tirelessly than people-- with similar (or
sometimes superior) skill. Manipulating video, audio, tactile
environments-- targeting, surveillance-- these are being
expanded and developed all the time, not just in the future.

change_what = "new bicycles"
change_to = "baby kittens"
phrase = lineinput # the input command
p = phrase | split p, change_what | join p, change_to
now = p | print # the output command
the only parts you need to type to make it work are:

changewhat "new bicycles"
changeto "baby kittens"
phrase lineinput
p phrase split p changewhat join p changeto
now p print

The only syntax fig requires is # hashes-for-comments and
"quotes for strings." Bold text is meaningless, underscores
are just part of our variable names. The rest is to group code
visually. Let's remove comments and number each line:

 1 change_what = "new bicycles"
 2 change_to = "baby kittens"
 3 phrase = lineinput
 4 p = phrase | split p, change_what | join p, change_to
 5 now = p | print

Lines 1 and 2 just set variables change_what and
change_to to the string to look for, and the string to change
it to. The names are not special-- we could have called these
f and z.

 3 phrase = lineinput
 4 p = phrase | split p, change_what | join p, change_to
 5 now = p | print

Line 3 is the first one that contains a fig command. lineinput
is one of fig's 90-something commands with a specific name,
and what it does is get a single line of keyboard input. And it
sets the variable to that input. So when we say:

phrase = lineinput

What we mean is:

"Create a variable named 'phrase', but instead of setting it to
a number or a character string, set it to whatever characters
are typed in at the keyboard." Right? That's easy.

 3 phrase = lineinput
 4 p = phrase | split p, change_what | join p, change_to
 5 now = p | print

Line 4 does a lot... it copies phrase (what we typed) to
variable p, it splits p into parts wherever change_what is
found, and it joins those parts using change_to:

change_what is "new bicycles"
change_to is "baby kittens"

